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Abstract11

We are looking at the generalization problem modulo some equational theories. This problem is dual12

to the unification problem: given two input terms, we want to find a common term whose respective13

two instances are equivalent to the original terms modulo the theory.14

There exist algorithms for finding generalizations over various equational theories. Our focus is15

on modular construction of equational generalization algorithms for the union of signature-disjoint16

theories. Specifically, we consider the class of regular and collapse-free theories, showing how to17

combine existing generalization algorithms to produce specific solutions in these cases.18

Additionally, we identify a class of theories that admit a generalization algorithm based on the19

application of axioms to resolve the problem. To define this class, we rely on the notion of syntactic20

theories, a concept originally introduced to develop unification procedures similar to the one known21

for syntactic unification. We demonstrate that syntactic theories are also helpful in developing22

generalization procedures that are similar to those used for syntactic generalization.23
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1 Introduction32

The problem of generalization of two terms s and t asks to find a term r such that s and33

t are substitution instances of r. The generalizations of interest are those that maximally34

retain similarities between the given terms while abstracting their differences in a uniform35

way. In other words, they should be the least general ones among generalizations of the given36

terms. The generalization problem is also called the problem of anti-unification since it can37

be seen as a dual to unification: while unification focuses on making two expressions more38

specific by finding their common instance via unifiers, anti-unification abstracts them to a39

more general form.40

The first generalization algorithms were developed in the 1970s [37, 40], motivated by41

the usefulness of this technique for inductive reasoning. Nowadays, application areas of42

anti-unification are quite diverse, including, e.g., automated program repair [8, 19, 43],43
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software code or specification synthesis [21, 39, 48], code similarity detection and change44

analysis [47, 9, 32], learning-related tasks [18, 35, 38], natural language processing [3, 24, 44],45

indexing/compression [12, 36, 25], just to name a few. Generalization computation techniques46

have been investigated for various structures (see, e.g., the recent survey [16] for an overview),47

among them, for first-order equational theories, which is also the subject of this paper.48

In equational anti-unification, syntactic equality is replaced by equality modulo the given49

equational theory. As a consequence, the given terms do not necessarily have a single least50

general generalization. Instead, problems are characterized by their minimal complete set of51

generalizations, which might be a singleton, a finite, an infinite set, or might not exist at52

all due to a clash between the minimality and completeness requirements. Several authors53

considered (first-order) equational anti-unification, studying the problem in associative,54

commutative, associative-commutative, unital, idempotent, absorptive theories, semirings,55

theories that lead to regular congruence classes, etc [1, 2, 4, 5, 11, 13, 14, 15, 30, 46].56

A more general question is related to anti-unification in a combined equational theory: Is57

it possible to derive a generalization algorithm for a union of equational theories from the58

existing generalization algorithms for the component theories? This is called the combination59

problem for generalization algorithms and is very important for applications. To the best60

of our knowledge, our work is the first attempt to address the modular construction of61

generalization algorithms.62

On the other hand, the combination problem has been studied quite intensively for63

unification; see, e.g., [7, 20, 22, 26, 27, 29, 41, 42, 45]. These modularity results impose64

certain restrictions on the component theories to guarantee the existence and good properties65

of the combined algorithm, the main restriction being that the theories are signature-disjoint.66

Considering regular collapse-free theories is also a classical restriction. In the class of regular67

collapse-free theories, the left-hand side and the right-hand side of any equational axiom68

are non-variable terms with exactly the same variables. A combination method is known69

for unification algorithms in any union of disjoint regular collapse-free theories [45], and70

another one exists for matching algorithms in any union of disjoint regular theories [34]71

where regular theories may have collapse axioms between a non-variable left-hand side and72

a variable right-hand side. It is important to notice that when we relax the restriction on73

equational theories, we may need to impose a stronger restriction on the kind of algorithms74

available in the component theories. Hence, the combination method introduced in [7] for the75

unification problem works in any union of disjoint theories, but as a counterpart, it assumes76

the existence of general unification procedures capable of dealing with free function symbols.77

Our contributions78

We consider the combination problem for generalization algorithms in the union of equational79

theories E1 and E2 over the signatures Σ1 and Σ2 and a set of free constants C, such that:80

Σ1 ∩ Σ2 = ∅, i.e., the theories are signature-disjoint (and Ei ∩ C = ∅ holds for i = 1, 2,81

since C consists of free constants);82

both E1 and E2 are regular collapse-free;83

for each Ei, i = 1, 2, there exists a complete generalization algorithm Gi which84

handles ground terms built over Σi ∪ C, and85

for any given ground terms t and u returns a triple (r, ϕ, ψ), where r is a generalization86

of (t, u) with respective solved substitutions (ϕ, ψ), meaning that application of (ϕ, ψ)87

to r does not lead to further (more specific) generalizations.88
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For such equational theories E1 and E2, we design a combination algorithm for genera-89

lization problems in E1 ∪ E2, which relies on Ei-generalization algorithms Gi for i = 1, 2,90

and show its completeness. This is our main result, which we further refine in two ways, as91

explained below.92

1. The class of finite theories satisfy the above-mentioned conditions and we show that93

combined generalization problems in the class can be solved in a modular way. Furthermore,94

we provide a rule-based generalization algorithm for the subclass of finite syntactic theories.95

The notion of syntactic theories was originally introduced to develop unification procedures96

similar to the one known for syntactic unification. We demonstrate that syntactic theories97

are also helpful in developing a rule-based generalization algorithm that extends syntactic98

generalization. This extension is obtained by introducing a new mutation rule where the99

resolvent axioms of the theory are applied to simplify the generalization problems.100

2. For theories that admit rule-based generalization algorithms working on configurations of101

a special form, we design a combination algorithm that uses the rules of the component102

algorithms (instead of using them as black-boxes), thus obtaining a combined rule-based103

algorithm with rules of the same form as the component algorithms. We call it the104

white-box combination method. This leads to a modular result: a combined algorithm105

obtained in such a way can be used as a component algorithm for further white-box106

combinations. This white-box combination method is applicable to any instance of the107

rule-based generalization algorithm introduced for finite syntactic theories.108

Organization109

After this introduction, Section 2 presents the required background. Then, Section 3110

presents some results connecting equational generalization to free generalization, showing111

that equational generalization in finite theories is reducible to free generalization, and so in112

finite theories equational generalization is finitary. In Section 4, we discuss the combination113

of generalization for regular collapse-free theories. Then, Section 5 explores the class of finite114

syntactic theories by showing a rule-based generalization algorithm. Section 6 considers the115

problem of combining rule-based generalization algorithms. Finally, Section 7 concludes and116

briefly discusses possible future work.117

2 Preliminaries118

2.1 Terms and Substitutions119

We consider a first-order alphabet consisting of a signature Σ (set of fixed arity function120

symbols) and a set of variables V. The set of terms T (Σ,V) over Σ and V is defined in the121

standard way: t ∈ T (Σ,V) iff t is defined by the grammar t := x | f(t1, . . . , tn), where x ∈ V122

and f ∈ Σ is an n-ary symbol with n ≥ 0.123

We denote arbitrary function symbols by f, g, h, constants by a, b, c, variables by x, y, z, v,124

and terms by s, t, r, u. The notions of term depth, term size, and a position in a term are125

defined in the standard way, see, e.g., [6]. By t|p, we denote the subterm of t at position p,126

and by t[s]p, a term obtained from t by replacing the subterm at position p with the term s.127

For any position p in a term t (including the root position ϵ), t(p) is the symbol at position128

p. The set of all variables in t is denoted by Var(t). A term is called linear if no variable129

occurs in it more than once, and ground if Var(t) = ∅.130

A sequence of terms t1, . . . , tn may be written t̄ when n is clear from the context.131
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Given any signature Σ and any finite set of constants C such that Σ∩C = ∅, the signature132

Σ ∪ C is denoted by ΣC .133

A substitution is a mapping from V to T (Σ,V), which is the identity almost everywhere.134

We use the Greek letters σ, ϑ, φ to denote substitutions, except for the identity substitution,135

which is written as Id. We represent substitutions using the usual set notation, e.g.,136

σ = {x1 7→ t1, . . . , xn 7→ tn} where {x1, . . . , xn} is the domain of σ, denoted by Dom(σ).137

Application of a substitution σ to a term t, denoted by tσ, is defined as xσ = σ(x) and138

f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ). Substitution composition is defined as a composition of139

mappings. It is associative but not commutative, with Id playing the role of the unit element.140

We write σϑ for the composition of σ with ϑ.141

2.2 Equational Theories142

Let E be a set of term pairs, i.e., elements of T (Σ,V) × T (Σ,V). An equational Σ-theory143

generated by E, denoted by =E , is the least congruence relation on T (Σ,V) that is closed144

under substitution application and contains E. We call E a presentation of =E , and the145

elements of E are called the axioms of =E , written as l = r. If s =E t, we say that s is equal146

modulo E to t. When E = ∅, every term is equal only to itself, and the theory is called the147

empty or free theory.148

It is common to slightly abuse the terminology in the literature by calling both E and149

=E an equational theory. For a given E, we denote by sig(E) the set of all function symbols150

occurring in E.151

A sequence of E-equalities s1 =E t1, . . . , sn =E tn may be written s̄ =E t̄ when n is clear152

from the context.153

An axiom l = r is regular if Var(l) = Var(r). An axiom l = r is collapse-free if l and r154

are non-variable terms. An axiom l = r is shallow if variables can only occur at a position at155

depth at most 1 in both l and r. An equational theory is regular (resp., collapse-free/root-156

preserving/shallow) if all its axioms are regular (resp., collapse-free/root-preserving/shallow).157

An equational theory E is finite if, for each term t, there are only finitely many terms s158

such that t =E s. An equational theory E is subterm collapse-free if there are no terms t, s159

such that t =E s and s is a strict subterm of t. A subterm collapse-free theory is necessarily160

collapse-free, and a finite theory is necessarily regular and subterm collapse-free.161

A theory E is syntactic if it has a finite resolvent presentation RP , defined as a finite set162

of axioms RP such that each equality t =E s has an equational proof t ↔∗
RP s with at most163

one equational step ↔RP applied at the root position. Any shallow theory is syntactic [17],164

and any collapse-free theory with finitary unification is syntactic [28].165

One can easily check that A = {x∗(y∗z) = (x∗y)∗z} (Associativity), C = {x∗y = y∗x}166

(Commutativity), and AC = A ∪ C (Associativity-Commutativity) are regular and collapse-167

free. Moreover, A, C and AC are finite and syntactic [33, 28], but only C is shallow. Since168

A, C, and AC are finite theories, they are also subterm collapse-free.169

2.3 Combination of Equational Theories170

In the rest of the paper, we assume that Ei is a regular collapse-free Σi-theory for i = 1, 2,171

where Σ1 and Σ2 are disjoint signatures. For sake of brevity, the combined signature Σ1 ∪ Σ2172

is abbreviated to Σ1,2, and the combined theory E1 ∪ E2 is also denoted by E1,2.173

A Σ-rooted term t is a term whose root symbol is in Σ. Given any ΣC
1,2-term t where174

t is Σi-rooted, an alien subterm of t is any subterm s of t which is not Σi-rooted and175

such that any proper superterm of s in t is Σi-rooted. The set of alien subterms of t is176
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denoted by Alien(t). Given any term t, its height of theory is formally defined as follows:177

ht(t) = 1 + max{ht(t′) | t′ ∈ Alien(t)}. Given a finite set T of ground ΣC
1,2-terms, we178

consider Aliens =
⋃
t∈T Alien(t) and a mapping π : Aliens → FC such that FC is a set of179

fresh free constants (FC ∩ C = ∅) and for any a, a′ ∈ Aliens, π(a) = π(a′) iff a =E1∪E2 a
′.180

Conversely, we define π−1 : FC → Aliens as a mapping such that for any a ∈ Aliens,181

π−1(π(a)) =E1∪E2 a. The i-abstraction of any term t ∈ T is denoted by tπi and is inductively182

defined as follows:183

cπi = c if c ∈ C,184

(f(t1, . . . , tn))πi = f(tπi
1 , . . . , t

πi
n ) if f ∈ Σi,185

(f(t1, . . . , tn))πi = π(f(t1, . . . , tn)) if f ∈ Σj for j ̸= i.186

▶ Lemma 1 (Correspondence for Equality). Let E1 and E2 be two signature-disjoint regular187

collapse-free theories. For any ΣCi -rooted terms s and t, s =E1∪E2 t iff sπi =Ei
tπi .188

Lemma 1 holds when the component theories E1 and E2 are regular collapse-free. In the189

general case where the component theories are arbitrary, we need to assume that s and t are190

in layer-reduced form in order to have the same correspondence with their i-abstractions [23].191

2.4 Generalization Problems192

Given an equational theory E, a term s is more general than t modulo E, or is an E-193

generalization of t, if there exists a substitution σ such that sσ =E t. In such a case, we write194

s ⪯E t and also say the term t is less general than s modulo E or that t is an E-instance of195

s. The relation ⪯E is a quasi-order and generates the equivalence relation, denoted by ≃E .196

The strict part of ⪯E is denoted by ≺E .197

An equational generalization problem is formulated as follows:198

Given: an equational theory E and two terms s and t;199

Find: a term r such that r ⪯E s and r ⪯E t (r is said to be an E-generalization of s and t).200

Given an equational theory E and two terms s and t, a set of terms G is called a complete201

set of E-generalizations of s and t if it satisfies the following properties:202

1. Soundness: every element of G is an E-generalization of s and t,203

2. Completeness: for every E-generalization q of s and t there exists r ∈ G such that q ⪯E r.204

The set G is called a minimal complete set of E-generalizations of s and t, denoted mcsgE(s, t)205

if it, in addition, satisfies the following:206

3. Minimality: if there exist r, q ∈ G such that r ⪯E q, then r = q.207

The existence and cardinality of mcsgE define what is called the generalization type of208

an equational theory E as follows: E has the generalization type 0 (or is nullary) if there are209

two terms s and t such that mcsgE(s, t) does not exist. Otherwise, the generalization type210

of E is211

unitary, if mcsgE(s, t) is singleton for all s and t (in this case, the sole element of212

mcsgE(s, t) is called a least general E-generalization of s and t and is denoted by213

lggE(s, t)),214

finitary, if mcsgE(s, t) is finite for all s and t, and there exists at least one pair of terms215

for which this set is not singleton,216

infinitary, if there exist s and t for which mcsgE(s, t) is infinite.217
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In the rest of the paper, we consider generalization algorithms defined as terminating218

inference systems transforming anti-unification triples (AUTs, for short) written x : t ≜ u219

where x is a variable and t, u are the two ground terms to generalize. More precisely, we are220

focusing on rule-based systems working on configurations C of the form A;S;σ, where A and221

S are sets of AUTs, called the active set and store of C, respectively, and σ is a substitution,222

called the generalization component of C. From now on, C is said to be a PSS-configuration;223

it consists of a problem together with a store and a substitution. Given a set of AUTs224

P =
⋃n
i=1{xi : ti ≜ ui}, we associate two substitutions: {x1 7→ t1, . . . , xn 7→ tn} is the left225

substitution of P and {x1 7→ u1, . . . , xn 7→ un} is the right substitution of P . A set of AUTs226

may be written using the disjoint union symbol ⊎ to isolate a specific AUT from that set.227

3 Equational Generalization vs Free Generalization228

The following two theorems characterize equational generalizations with the help of free least229

general generalizations.230

▶ Theorem 2 (Free lgg’s versus E-Generalizations). Given an equational theory E and two231

terms s and t, if a term r is an E-generalization of s and t, then there exist terms s′, t′, and232

r′ such that s′ =E s, t′ =E t, r′ is a free least general generalization of s′ and t′, and r ⪯∅ r
′.233

Proof. From r being an E-generalization of s and t we get the existence of two substitutions234

σ and ϑ such that rσ =E s and rϑ =E t. Take s′ = rσ and t′ = rϑ. Then we have s′ =E s235

and t′ =E t. Moreover, r is a free generalization of s′ and t′. Then there exists a free least236

general generalization r′ of s′ and t′, and we get r ⪯∅ r
′. ◀237

▶ Theorem 3 (Completeness and Finiteness through Free lgg’s). Let E be an equational theory,238

s and t be two terms, and G be the set of terms GE(s, t) = {lgg∅(s′, t′) | s′ ∈ [s]E , t′ ∈ [t]E}.239

Then240

1. GE(s, t) is a complete set of E-generalizations of s and t.241

2. GE(s, t) is not necessarily minimal.242

3. If E is a finite theory, then GE(s, t) is finite modulo variable renaming. Consequently,243

every finite theory E has the E-generalization type at most finitary.244

4. For any E, if [s]E is finite, then GE(s, t) (as well as GE(t, s)) is also finite modulo variable245

renaming.246

Proof.247

1. Every element r′ ∈ G is an E-generalization of s and t, because there exist substitutions248

σ and ϑ such that r′σ = s′ =E s and r′ϑ = t′ =E t. Thus, together with Theorem 2, we249

may conclude that for every E-generalization r of s and t there exists an E-generalization250

r′ of s and t such that r′ ∈ G and r ⪯∅ r
′, which implies the completeness of G.251

2. Let E be the equational theory that asserts the commutativity of f , and take s = f(a, b)252

and t = f(a, b). Then GE(s, t) = {f(a, b), f(x, y)}, because f(a, b) = lgg∅(f(a, b), f(a, b))253

and f(x, y) = lgg∅(f(a, b), f(b, a)). Obviously, f(x, y) is more general than f(a, b) and,254

hence, GE(s, t) is not minimal.255

3. If E is a finite theory, then [s]E and [t]E are finite sets. Free least general generalizations256

are unique (modulo variable renaming). Hence, GE(s, t) is finite modulo renaming. Since257

E-matching is finitary in any finite theory E, GE(s, t) can always be minimized, and we258

get that E-generalization type in finite theories is at most finitary.259
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4. First, note that the depth of a free generalization of two terms never exceeds the minimum260

of their depths, and such a generalization does not contain any function symbol that261

does not appear in both of them. Therefore, for a fixed s′ ∈ [s]E , the depth of lgg∅(s′, t′)262

is bounded by the depth of s′, and the set of function symbols that potentially may263

appear in lgg∅(s′, t′) is restricted to the set of function symbols of s′. Hence, there can264

be only finitely many terms (over a fixed-arity alphabet like ours) that satisfy these265

conditions. Hence, whatever t′ we take, the candidates for lgg(s′, t′) may come only from266

a fixed finite (modulo variable renaming) set that depends on s′ only: the elements of267

this set are terms whose free instance is s′. Therefore, for the given s′, the set of all268

terms {lgg∅(s′, t′) | t′ ∈ T (F ,V)} is finite. Since by assumption [s]E is finite, we get that269

GE(s, t) is a finite union of finite sets, which implies that it is finite.270

◀271

▶ Example 4. This example illustrates an infinite GE for E that is non-finite subterm-collapse272

free (the simplest class of non-finite theories according to [10]). Let E = {f(a, g(x)) =273

f(a, x), f(b, g(x)) = f(b, x)}, s = f(a, c), and t = f(b, d). Then274

GE(s, t) = {f(x, y), f(x, g(y)), f(x, g(g(y)), . . .}.275

In fact, this set contains an infinite chain276

f(x, y) ≺E f(x, g(y)) ≺E f(x, g(g(y)) ≺E · · · .277

4 Combined Generalization in Regular Collapse-Free Theories278

In the section, we consider regular collapse-free theories E. With the assumption that E is279

regular, the following property holds: given any generalization r of a pair of ground terms280

(t, u), any substitutions ϕ, ψ such that rϕ =E t and rψ =E u are necessary ground. This281

assumption is useful in the next definition, where the considered substitutions are necessarily282

ground substitutions.283

▶ Definition 5 (Generalizations with Solved Instantiations). Let E be a regular Σ-theory.284

Given any pair of ground ΣC-terms (t, u), an E-generalization of (t, u) with respective285

instantiations (ϕ, ψ) is a ΣC-term r together with a pair of substitutions (ϕ, ψ) such that286

Var(r) = Dom(ϕ) = Dom(ψ), rϕ =E t and rψ =E u. Given any pair of ground ΣC-terms287

(t, u), a triple representing an E-generalization of (t, u) with solved instantiations (an E-GSI288

triple of (t, u), for short) is any triple (r, ϕ, ψ) such that289

r is an E-generalization of (t, u) with respective instantiations (ϕ, ψ),290

for any x ∈ Var(r), there is no non-variable E-generalization of (xϕ, xψ),291

for any x, y ∈ Var(r), xϕ =E yϕ and xψ =E yψ implies x = y1.292

A set ST of E-GSI triples of (t, u) is said to be complete if
⋃

(r,ϕ,ψ)∈ST {r} is a complete set293

of E-generalization of (t, u). We say that E admits an algorithm computing a complete set294

of E-generalizations with solved instantiations (GSI algorithm, for short) if there exists a295

computable function returning, for each input pair of ground ΣC-terms (t, u), a complete set296

of E-GSI triples of (t, u) denoted by GSIE(t, u).297

1 This third condition may be dropped when considering linear generalizations.
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A GSI algorithm can be constructed via the repeated application of a generalization298

algorithm together with a matching algorithm. In the case of a finite theory, the generalization299

problem is finitary and the matching problem as well. Consequently, this iteration can be300

implemented, and it is necessarily terminating in the case of a finite theory since the size of301

any generalization is necessarily bounded. Thus, we have that:302

▶ Lemma 6. Any finite theory admits a GSI algorithm.303

In Section 5, we introduce another class of theories admitting a GSI algorithm. This class304

includes non-finite theories.305

In general, for the theories we want to combine, we could imagine deriving GSI algorithms306

from existing rule-based generalization algorithms transforming PSS-configurations (see307

Section 6). Then, the resulting GSI algorithms can be combined directly as black-boxes,308

provided that the theories are regular collapse-free.309

▶ Theorem 7 (Modular Property for GSI Algorithm). The class of regular collapse-free theories310

admitting a GSI algorithm and with decidable equality is closed by disjoint union.311

Proof. The rule-based procedure given in Figure 1 can be shown terminating thanks to a312

complexity measure defined as follows: to each configuration (A;S;σ), we associate a pair313

(mht(A), |S|) where mht(A) is the multiset of heights of theory
⋃

(x′:t′≜u′)∈A{ht(t′), ht(u′)},314

and |S| is the cardinality of S. These pairs are ordered lexicographically, the first component315

being ordered by the multiset extension of the (Noetherian) ordering on positive integers,316

while the second component is ordered by the (Noetherian) ordering on positive integers.317

One can easily verify that Ei-Gen and E1,2-Sol strictly decrease the first component of the318

pair, and E1,2-Mer does not increase the first component but strictly decreases the second319

one.320

The normal forms with respect to the rule-based procedure are the configurations of the321

form (∅;S;σ) upon which E1,2-Mer does not apply. Indeed, any configuration (A;S;σ) with322

A ̸= ∅ is necessarily reducible by either Ei-Gen or E1,2-Sol.323

For any derivation starting with the input configuration ({x : t ≜ u}, ∅, Id) and leading324

to a final configuration (∅;S;σ), we can associate a tuple (xσ, ϕS , ψS) where325

ϕS = {y 7→ t′ | y : t′ ≜ u′ ∈ S, y ∈ Var(xσ)},326

ψS = {y 7→ u′ | y : t′ ≜ u′ ∈ S, y ∈ Var(xσ)}.327

Then, the set of all such tuples defines a GSIE1∪E2(t, u) as stated in Definition 5. This is a328

consequence of the following facts:329

Ei-Gen is sound and complete by Lemma 8 and Corollary 9 (see below),330

E1,2-Sol is sound and complete since E1 and E2 are collapse-free.331

◀332

We now show the completeness of the algorithm presented in Figure 1 by considering any333

generalization of the given terms over the combined theory E1 ∪ E2 and showing that we334

can construct from it an Ei-generalization, where i depends on the root symbol, that uses335

the same variable instantiations as the combined generalization. In essence, our combination336

algorithm builds on the completeness of the algorithms for the individual theories and is thus337

complete as well.338

The following technical lemma and corollary are used in the proof of Theorem 7.339
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Ei-Gen: Generalization in the Ei-theory
{x : t ≜ u} ⊎A;S;σ =⇒ (P \ Si) ∪A;Si ∪ S;σ{x 7→ (rπ−1)},

where
t(ϵ) ∈ ΣCi , u(ϵ) ∈ ΣCi ,
(r, ϕ, ψ) ∈ GSIEi

(tπi , uπi),
P = {y : (yϕ)π−1 ≜ (yψ)π−1 | y ∈ Var(r)},
Si = {y : t′ ≜ u′ | (y : t′ ≜ u′) ∈ P, t′(ϵ) ∈ ΣCi , u′(ϵ) ∈ ΣCi }.

E1,2-Sol: Solving in the combined theory
{x : t ≜ u} ⊎A;S;σ =⇒ A;S ∪ {x : t ≜ u};σ, if t(ϵ) ∈ Σi and u(ϵ) ∈ Σ3−i.

E1,2-Mer: Merging in the combined theory
∅; {x : t ≜ u, x′ : t′ ≜ u′} ⊎ S;σ =⇒ ∅;S ∪ {x : t ≜ u};σ{x′ 7→ x},

if t =E1∪E2 t
′ and u =E1∪E2 u

′.

Figure 1 Combined Generalization Procedure for Regular Collapse-Free Theories

▶ Lemma 8 (Correspondence for Generalization). Let E1 and E2 be two signature-disjoint340

regular collapse-free theories over respectively the signatures Σ1 and Σ2, t and u any ΣC
i -341

rooted terms for some i = 1, 2, and r any E1 ∪ E2-generalization r of (t, u) with respective342

instantiations (ϕ, ψ). Consider a bijective mapping ΠV : Alien(r) → V where V is a set of343

fresh variables and the following terms and substitutions:344

ri is the i-pure term obtained from r by replacing each r′ ∈ Alien(r) by ΠV (r′).345

ϕi and ψi are two substitutions such that Dom(ϕi) = Dom(ψi) = Var(ri) and defined as346

follows:347

for any x ∈ Var(ri) \ Var(r), xϕi = ((Π−1
V (x))ϕ)πi and xψi = ((Π−1

V (x))ψ)πi ,348

for any x ∈ Var(r), xϕi = (xϕ)πi .349

Then, ri is an Ei-generalization of (tπi , uπi) with respective instantiations (ϕi, ψi), and for350

any x ∈ Var(ri) \ Var(r), Π−1
V (x) is an E1 ∪ E2-generalization of (xϕi)π−1, (xψi)π−1) with351

respective instantiations (ϕ, ψ).352

Proof. By assumption, rϕ =E1∪E2 t and rψ =E1∪E2 u. By Lemma 1, (rϕ)πi =E1∪E2 t
πi353

and (rψ)πi =E1∪E2 u
πi . Then, by definition of ri, ϕi and ψi, we have riϕi = (rϕ)πi and354

riψi = (rψ)πi . Consequently, riϕi =E1∪E2 t
πi and riψi =E1∪E2 u

πi .355

For each x ∈ Var(ri)\Var(r), by definition of ϕi and ψi, we have that (Π−1
V (x)ϕ)πi = xϕi356

and (Π−1
V (x)ψ)πi = xψi. Applying π−1 on these identities, we get (Π−1

V (x)ϕ)πiπ−1 =357

(xϕi)π−1 and (Π−1
V (x)ψ)πiπ−1 = (xψi)π−1. By definition of π−1, s =E1∪E2 s

πiπ−1 for any358

term s. Consequently, (Π−1
V (x))ϕ =E1∪E2 (xϕi)π−1 and (Π−1

V (x))ψ =E1∪E2 (xψi)π−1. ◀359

▶ Corollary 9. Let E1 and E2 be two signature-disjoint regular collapse-free theories over360

respectively the signatures Σ1 and Σ2, and any ΣC
i -rooted terms t, u where i = 1, 2. Then,361

there is no non-variable E1 ∪ E2-generalization of (t, u) iff there is no non-variable Ei-362

generalization of (tπi , uπi).363
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5 Rule-Based Generalization in Finite Syntactic Theories364

In this section, we explore a class of equational theories admitting a rule-based generalization365

algorithm similar to the one known for the empty theory. For the class of finite syntactic366

theories, we construct a rule-based algorithm fully parametrized by the axioms of a resolvent367

presentation of a finite syntactic theory.368

▶ Example 10. The class of finite syntactic theories includes A, C, AC, finite shallow369

theories [17] such as f(x) = g(x), and permutative theories closed by paramodulation [31].370

Notice that {f(a) = a} and {f(f(x)) = f(x)} are syntactic but not finite theories.371

▶ Lemma 11. For any finite syntactic theory E with a resolvent presentation RP , the372

inference system given in Figure 4 provides an E-generalization algorithm, using the axioms373

of RP to374

check E-equality (Figure 2),375

solve E-matching problems (Figure 3),376

control the construction of E-generalizations.377

Proof. The rule-based procedure given in Figure 4 terminates since E is assumed to be finite.378

Indeed, the size of the generalizations associated with configurations is necessarily bounded,379

and so there are only finitely many applications of Mut. The rule Sol is sound and complete:380

when an AUT cannot be transformed by Mut or Dec, we cannot have a generalization381

rooted by a function symbol, a variable is the only possible way to get a generalization for382

this AUT. The soundness and completeness of Mut and Dec follow from the fact that RP383

is a resolvent presentation of E.384

For any input PSS-configuration ({x : t ≜ u}; ∅; Id) where t, u are ground ΣC-terms, the385

procedure terminates by computing finitely many PSS-configurations of the form (∅;S;σ)386

and the union of all the terms xσ corresponds to a complete set of E-generalizations of t ≜ u,387

since all the rules are sound and complete. ◀388

▶ Remark 12. For the inference system given in Figure 2, an input problem {s = t} is such389

that s =E t iff all the normal forms reached by this inference system are the empty set.390

For the inference system given in Figure 3, the set of solutions of an input E-matching391

problem {s ≤ t} consists of all the normal forms reached by this inference system corresponding392

to solved forms
⋃m
i=1{xi ≤ ti} where x1, . . . , xm are pairwise distinct variables.393

Mut=:
{f(t̄) = g(ū)} ⊎ Γ =⇒ {t̄ = l̄θ} ∪ Γ

where f(l̄) = g(r̄) is a fresh renaming of an axiom in RP , and θ is a substitution such that
r̄θ =RP ū.

Dec=:
{f(t̄) = f(ū)} ⊎ Γ =⇒ {t̄ = ū} ∪ Γ where f ∈ ΣC .

Figure 2 Procedure for Checking Equality in a finite theory with a resolvent presentation RP

The class of finite syntactic theories is known to be closed by disjoint union [33]. Actually,394

for a union of two disjoint finite theories with respective resolvent presentations RP1 and395

RP2, we have that RP1 ∪RP2 is a resolvent presentation and it corresponds to a finite theory.396
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Mut≤: Mutation rule for matching
{f(t̄) ≤? g(ū)} ⊎ Γ =⇒ {t̄ ≤? l̄θ} ∪ Γ

where f(l̄) = g(r̄) is a fresh renaming of an axiom in RP , and θ is a substitution such that
r̄θ =RP ū.

Dec≤: Decomposition rule for matching
{f(t̄) ≤? f(ū)} ⊎ Γ =⇒ {t̄ ≤? ū} ∪ Γ where f ∈ ΣC .

Mer≤: Merging rule for matching
{x ≤? t, x′ ≤? t′} ⊎ Γ =⇒ {x ≤? t} ∪ Γ if t =RP t

′.

Figure 3 Matching Procedure in a finite theory with a resolvent presentation RP

Mut: Mutation rule for generalization
{x : f(t̄) ≜ g(ū)} ⊎A;S;σ =⇒ {y : yθ ≜ yθ′ | y ∈ ȳ} ∪A;S;σ{x 7→ h(ȳ)}

where h(l̄) = f(r̄) ∈ RP , h(l̄′) = g(r̄′) ∈ RP , h(ȳ)θ =RP f(t̄) and h(ȳ)θ′ =RP g(ū).

Dec: Decomposition rule for generalization
{x : f(t̄) ≜ f(ū)} ⊎A;S;σ =⇒ {ȳ : t̄ = ū} ∪A;S;σ{x 7→ f(ȳ)}

where f ∈ ΣC and ȳ are fresh variables.

Sol: Solving rule for generalization
{x : t ≜ u} ⊎A;S;σ =⇒ A;S ∪ {x : t ≜ u};σ if neither Mut nor Dec applies.

Mer: Merging rule for generalization
∅; {x : t ≜ u, x′ : t′ ≜ u′} ⊎ S;σ =⇒ ∅;S ∪ {x : t ≜ u};σ{x′ 7→ x}

if t =RP t
′ and u =RP u

′.

Figure 4 Generalization Procedure in a finite theory with a resolvent presentation RP

Consequently, the inference system given in Figure 4 can be directly applied to any union of397

disjoint finite syntactic theories for which the resolvent presentations are known. However,398

finding a resolvent presentation may be a difficult task, especially if E-unification is not399

known to be finitary. In the case we already have a GSI algorithm for a finite theory E, we400

can combine it directly using the approach introduced in Section 4; we don’t have to find a401

resolvent presentation (if there exists one for E).402

▶ Remark 13. The empty theory ∅ is a finite syntactic theory and its resolvent presentation403

is empty. In the case RP = ∅, one can notice that the inference system from Figure 4404

corresponds to the classical rule-based generalization algorithm known for the empty theory.405

6 White-Box Combination of Rule-Based Generalization Algorithms406

In this section, we focus on the modular construction of generalization algorithms transforming407

PSS-configurations. Let us now define precisely this kind of rule-based generalization408

algorithm.409
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▶ Definition 14. Let E be a regular theory. An E-generalization algorithm transforming
PSS-configurations is an inference system G such that for any initial configuration ({x : t ≜
u}, ∅, Id), it derives a finite set FC of final configurations (∅;S;σ) for which⋃

(∅;S;σ)∈FC

{xσ}

is a complete set of E-generalizations of (t, u). Furthermore, for any configuration (A;S;σ)410

derived from the initial configuration ({x : t ≜ u}; ∅; Id), the following (invariant) properties411

must hold:412

xσ is an E-generalization of (t, u) with respective instantiations (ϕ, ψ) where ϕ (resp., ψ)413

is the left (resp., right) substitution of A ∪ S,414

for any x′ : t′ ≜ u′ in S, there is no non-variable E-generalization of (t′, u′).415

▶ Remark 15. An E-generalization algorithm transforming PSS-configurations leads to416

a GSI-algorithm. Consider an initial configuration ({x : t ≜ u}, ∅, Id) and any triple417

(rσ, ϕS , ψS) such that (∅, S, σ) ∈ FC where FC is the set of final configurations given in418

Definition 14 and ϕS (resp., ψS) denotes the left (resp., right) substitution of S. Then,419 ⋃
(∅,S,σ)∈FC{(xσ, ϕS , ψS)} is actually a GSIE(t, u).420

The rule-based procedure given in Figure 4 corresponds to a generalization algorithm421

transforming PSS-configurations, thus leading to a GSI algorithm. Conversely, note that a422

GSI algorithm can be turned into a generalization algorithm transforming PSS-configurations423

where all derivations are of length 1.424

▶ Corollary 16. A theory admits a generalization algorithm transforming PSS-configurations425

iff it admits a GSI algorithm.426

Generalization algorithms transforming PSS-configurations correspond to GSI algorithms,427

and so they can be combined using the method given in Figure 1, provided that the respective428

theories E1 and E2 are regular collapse-free. Since this method is given as an inference429

system also manipulating PSS-configurations, it can be reworded as an E1 ∪E2-generalization430

algorithm transforming PSS-configurations. In this new presentation, we do not directly use431

the triples from GSIEi
-sets, but we just apply one step of the inference system corresponding432

to an Ei-generalization algorithm transforming PSS-configurations, see Figure 5. This is433

sufficient to move forward with a solution.434

Given two generalization algorithms G1 and G2 transforming PSS-configurations, let435

G1 ⊕ G2 be the inference system given by the set of rules {Ei-Step, E1,2-Sol, E1,2-Mer}436

where Ei-Step is introduced in Figure 5 while E1,2-Sol and E1,2-Mer are from Figure 1.437

Ei-Step:
{x : t ≜ u} ⊎A;S;σ =⇒ (Aiπ−1) ∪A; (Siπ−1) ∪ S;σ(σiπ−1)

where t(ϵ) ∈ ΣCi , u(ϵ) ∈ ΣCi and ({x : tπi ≜ uπi}; ∅; Id) −→Gi
(Ai;Si;σi).

Figure 5 Rule calling a generalization algorithm Gi transforming PSS-configurations.

▶ Theorem 17 (Modular Construction for Rule-Based Generalization). Let E1 and E2 be438

two signature-disjoint regular collapse-free theories. If Gi is an Ei-generalization algorithm439

transforming PSS-configurations for i = 1, 2, then G1 ⊕ G2 is an E1 ∪ E2-generalization440

algorithm transforming PSS-configurations.441
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Proof. The inference system G1 ⊕ G2 is terminating since G1 and G2 are terminating, and442

there are finitely many alternations of calls to G1 and to G2 (see Lemma 8). Actually,443

G1 ⊕G2 corresponds to an E1 ∪E2-generalization algorithm transforming PSS-configurations444

since the Ei-Step rule from Figure 5 is sound and complete by Lemma 8 and Corollary 9. ◀445

▶ Remark 18. In both rules Ei-Step and Ei-Gen, the constant abstraction (·)πi and the446

term concretization (·)π−1 should be considered as transparent operations. With (·)πi , aliens447

are viewed as free constants, with the restriction that two E1 ∪ E2-equal aliens must be448

viewed as the same free constant. Conversely, with (·)π−1, these free constants are viewed449

back as terms in the combined theory E1 ∪E2. By a slight abuse of notation, if we omit to450

apply these transformations, then the rules Ei-Step and Ei-Gen become easy to express.451

Note that for free, associative, and commutative theories, all four algorithms for the452

combined theories (∅)(A), (∅)(C), (A)(C), (∅)(A)(C) described in [2] can be obtained as a453

combination of generalization algorithms transforming PSS-configurations.454

▶ Example 19. Consider E1 = {f(x) = g(x)} and E2 = C(+). For i = 1, 2, one can show455

the existence of an Ei-generalization algorithm transforming PSS-configurations, say Gi,456

given by the set of rules457

{Ei-Mut, Dec, Sol, Mer},458

where Dec,Sol,Mer can be found in Figure 4, and the mutation rules E1-Mut and E2-Mut459

are defined as follows:460

E1-Mut:
{x : f(t) ≜ g(u)} ⊎A;S;σ =⇒ {y : t ≜ u} ∪A;S;σ{x 7→ f(y)}

E2-Mut:
{x : t+ t′ ≜ u+ u′} ⊎A;S;σ =⇒ {y : t ≜ u′, z : t′ ≜ u} ∪A;S;σ{x 7→ y + z}

Let us now detail how the combined generalization algorithm G1 ⊕ G2 is applied to solve

x : f(f(a) + f(b)) ≜ g(f(c) + f(a)).

The derived PSS-configurations are listed in the table below, where the rightmost column461

shows the configuration number, while the first column indicates how the configuration in462

that row is obtained (which generalization algorithm is applied to which configuration):463

({x : f(f(a) + f(b)) ≜ g(f(c) + f(a))}; ∅; Id) (0)
G1(0) ({y1 : f(a) + f(b) ≜ f(c) + f(a)}; ∅; σ0{x 7→ f(y1)}) (1)
G2(1) ({y2 : f(a) ≜ f(c), y3 : f(b) ≜ f(a)}; ∅; σ1{y1 7→ y2 + y3)}) (2)
G1(2) ({y4 : a ≜ c, y3 : f(b) ≜ f(a)}; ∅; σ2{y2 7→ f(y4))}) (3)
G1(3) ({y3 : f(b) ≜ f(a)}; {y4 : a ≜ c}; σ3) (4)
G1(4) ({y5 : b ≜ a}; {y4 : a ≜ c}; σ4{y3 7→ f(y5)}) (5)
G1(5) (∅; {y4 : a ≜ c, y5 : b ≜ a}; σ5) (6)

G2(1) ({y6 : f(a) ≜ f(a), y7 : f(b) ≜ f(c)}; ∅; σ1{y1 7→ y6 + y7)}) (7)
G1(7) ({y8 : a ≜ a, y7 : f(b) ≜ f(c)}; ∅; σ7{y6 7→ f(y8)}) (8)
G1(8) ({y7 : f(b) ≜ f(c)}; ∅; σ8{y8 7→ a}) (9)
G1(9) ({y9 : b ≜ c}; ∅; σ9{y7 7→ f(y9)}) (10)
G1(10) (∅; {y9 : b ≜ c}; σ10) (11)

464

Hence, (6) and (11) are the final configurations:465
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(∅; {y4 : a ≜ c, y5 : b ≜ a}; {x 7→ f(y1), y1 7→ y2 + y3, y2 7→ f(y4), y3 7→ f(y5)}),466

(∅; {y9 : b ≜ c}; {x 7→ f(y1), y1 7→ y6 + y7, y6 7→ f(y8), y8 7→ a, y7 7→ f(y9)}).467

The resulting generalizations are:468

f(f(y4) + f(y5)), with respective instantiations ({y4 7→ a, y5 7→ b}, {y4 7→ c, y5 7→ a}),469

f(f(a) + f(y9)), with respective instantiations ({y9 7→ b}, {y9 7→ c}).470

Since both G1 and G2 can handle any AUT between two constants in C, G2 could be471

applied instead of G1 on (3), (5), (8) and (10).472

7 Conclusion473

We have introduced a combination method for the generalization problem in any union474

of disjoint regular collapse-free theories. Regularity is required in our framework in order475

to satisfy that any matching problem has only ground solutions. With this property, we476

have only to consider the generalization of ground terms, involving possibly free constants.477

Collapse-freeness is also very useful to solve in an easy way the generalization of two terms478

rooted in distinct theories. In future work, we plan to relax this regular and collapse-free479

assumption. Considering (particular) non-disjoint unions of theories would be also a natural480

continuation, but this seems to be challenging even if only constants are shared. Until now,481

we have considered rule-based generalization for finite theories, and the next step is to apply482

our rule-based approach to non-finite theories. Finally, we are interested in investigating483

how our combination approach could be adapted to generalization procedures that are not484

necessarily terminating.485
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