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Abstract This work discusses applications of a formalization in Isabelle/HOL of the6

Compactness theorem for propositional logic. The formalization of the Compactness7

theorem is based on the model existence theorem approach and is explained in detail.8

The applications cover extensions of combinatorial theorems over countable structures,9

including the De Bruijn-Erdös Graph coloring theorem for countable graphs, König’s10

lemma, and set- and graph-theoretical versions of Hall’s theorem for countable families11

of sets and graphs. The main distinguishing feature of the formalization of these ap-12

plications is the proof methodology based on the construction of models to apply the13

Compactness theorem.14

1 Introduction15

The propositional Compactness theorem is of principal importance for any meta-logical16

development because of the myriad of applications in logic and combinatorics. Typi-17

cally, this theorem is presented as a simple consequence of the completeness theorem.18

However, constructive proofs based on Henkin’s-style model existence theorem provide19

the mathematical machinery to design proofs of combinatorial properties in areas such20

as set theory and graph theory through the construction of logical interpretations and21

models.22

This paper discusses a formalization in Isabelle/HOL of the Compactness theorem23

for propositional logic according to Smullyan’s approach given in the third chapter24

of his influential textbook on mathematical logic [55], and based on Henkin’s model25

existence theorem. The formalization follows the impeccable presentation in Fitting’s26
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textbook [15] and was initially developed as part of Serrano’s thesis [47]. Two other for-27

malizations of the Compactness theorem by Berghofer [5] and by Michaelis and Nipkow28

[37] were developed in Isabelle. The current formalization uses Berghofer’s technique to29

enumerate (predicate) formulas, fulfilling formula enumeration requirements construc-30

tively according to Fitting’s textbook [15]. The formalization by Michaelis and Nipkow31

also includes a proof of the Compactness theorem. Still, it focuses on various properties32

of different propositional proof systems such as natural deduction, sequent calculus, res-33

olution, and Hilbert systems (see additional discussion in the related work’s Section 4).34

The distinguished feature of the current formalization is related to the formalization35

of applications of the Compactness theorem outside the logical setting. Specifically,36

this paper discusses how models and interpretations are built for proving landmark37

combinatorial results such as König’s lemma and the de Bruijn-Erdös k-coloring the-38

orem and Hall’s theorem, both for the countable infinite case. The technique applied39

in the formalizations of each of these three properties consists of the construction of a40

set of propositional formulas specifying the target property (e.g., set-representability,41

graph-coloration, tree paths); afterward, building models for the countable cases; then,42

applying the Compactness theorem for concluding the property. Other approaches for43

addressing König’s lemma are available in the Isabelle libraries. For instance, Lochbihler44

[34] and Traytel and Popescu presented treatments for this result applying coinductive45

techniques [6] (see the related work’s Section 4).46

The proofs described in this paper add to the meta-logic available in Isabelle/HOL,47

another proof of the Compactness theorem for propositional logic for the countable case.48

The formalizations of the de Bruijn-Erdös k-coloring theorem for countable graphs49

and of König’s lemma by the model construction technique and application of the50

Compactness theorem are unpublished and discussed in detail. The formalization of51

Hall’s theorem for countable sets is only briefly addressed since it was reported in detail52

in [48]. Also, a graph-theoretical version of Hall’s theorem for countable graphs was53

presented in [49].54

1.1 Organization55

Initially, Section 2 discusses the formalization of the Compactness theorem; afterward,56

Section 3 details the three applications mentioned above; finally, after a brief discussion57

on related work in Section 4, Section 5 concludes. When pertinent, the paper includes58

links to crucial aspects of the development available as [50] through the link https:59

//www.isa-afp.org/entries/Prop_Compactness.html.60

2 Compactness Theorem61

For the preamble of this section, we present a selection of comments extracted from62

the excellent discussion on the Compactness theorem by Paseau and Leek [39] and on63

Gödel’s mathematical work in [14].64

2.1 Proofs of the Compactness Theorem65

The Compactness theorem is a fundamental property for the model theory of (classical)66

propositional and first-order logic. Besides algebra and combinatorics, the Compactness67

https://www.isa-afp.org/entries/Prop_Compactness.html
https://www.isa-afp.org/entries/Prop_Compactness.html
https://www.isa-afp.org/entries/Prop_Compactness.html
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theorem also has implications in topology and foundations of mathematics. In general,68

it implies that any compact logic extending first-order logic cannot express the notions69

of finitude or infinitude (of a model). Also, it implies that any first-order theory of70

arithmetic satisfied by the standard model has a non-standard model. It also can be71

used to prove the Order-Extension Principle: any partial order may be extended to a72

linear order.73

Also, according to Paseau and Leek [39], the first proof of a Compactness theorem74

for countable versions of propositional and first-order logic was published by Gödel:75

(Satz X in [22]), who also proved the general version for arbitrary languages applying76

transfinite recursion in [23]. Mal’cev [36] also proved the Compactness theorem for77

propositional logic, again using the full strength of the Axiom of Choice. His proof78

relies on transfinite induction.79

The first explicit, published proofs of a Compactness theorem from completeness,80

which is the one presented in several contemporary textbooks in logic, were given in-81

dependently by Henkin and Robinson for the first-order functional calculus [28] and82

[43], and for the simple theory of types [29]. Indeed, Paseau and Leek [39] adequately83

remark that “proofs of compactness via completeness are not satisfactory because they84

are based on properties incidental to the semantic property of interest. Such proofs con-85

clude compactness, a semantic property, from a property of the logic relating its syntax86

to its semantics.” The authors also cited Keisler’s connections between ultraproducts87

technique and compactness and essential and unessential applications of such method.88

In particular, Keisler’s viewpoint about such proofs of compactness [32]: “Unlike the89

completeness theorem, the Compactness theorem does not involve the notion of a for-90

mal deduction, and so it is desirable to prove it directly without using that notion.”91

They finish with the following commentary: “From the perspective of a model theorist92

who sees talk of syntax as a heuristic for the study of certain relations between struc-93

tures that happen to have syntactic correlates, proving compactness via completeness94

is tantamount to heresy ([40], page 53).”95

Our formalization uses Smullyan’s approach in Fitting’s textbook [15], which is96

a direct proof of the Compactness theorem for propositional logic without using the97

Completeness theorem.98

2.2 Formalization of the Compactness Theorem99

The formalization was first given in [47] and follows Smullyan’s proof as presented in100

Fitting’s famous textbook [15]. König’s lemma can be used to prove the Compactness101

theorem for propositional logic in the countable case. Consider a set of formulas S. It102

is enough to order the countable set of sentences in S, say as F1, F2, . . ., and to build103

a countable tree with successful evaluations of the propositional letters (i.e., atoms)104

validating the subsets of formulas {F1}, {F1, F2}, and so on. The infinite branch gives105

an interpretation of S. Other proofs of this theorem are also provided as part of a106

collection of classical propositional formalizations aiming at applications and teaching107

logic. For instance, Michaelis and Nipkow developed a formalization, part of IsaFOL,108

based on an enumeration of all formulas and saturation accordingly to Enderton’s109

textbook proof ([13]) [37]. The formalization in this paper is based on the so-called110

“model existence theorem”. It shows first Hintikka’s lemma: Hintikka sets are satisfiable.111

Such sets are downward saturated sets of propositional formulas to be discussed in112

explaining the formalization.113

https://github.com/IsaFoL/IsaFoL
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Berghofer developed a formalization in Isabelle/HOL of the model existence theo-114

rem for first-order logic according to Fitting’s textbook in [5]. The current formalization115

is in Isabelle/Isar, aiming for a detailed presentation of the proof. In particular, it fol-116

lows Berghofer’s approach to specify and enumerate (propositional) formulas, formula117

consistency, and Hintikka sets and to formalize Hintikka’s lemma.118

The satisfiability of any Hintikka set is proved by assuming a valuation that maps119

all propositional letters in the set to true and all other propositional letters to false120

(mapping IH in the theory HintikkaTheory ). The second step consists of proving121

that families of sets of propositional formulas, which hold the so-called “propositional122

consistency property1.” This property is specified as the property consistenceP in the123

theory Closedness . That families of sets satisfying the consistency property consist124

of satisfiable sets is indeed the model existence theorem (theory ModelExistence ).125

The Model Existence theorem allows using the abstract concept of propositional126

consistency property to formalize meta theorems in Propositional Logic. This notion127

abstracts the characteristics associated with the concept of consistency relative to a128

specific proof procedure, which is used to demonstrate the system’s completeness.129

The model existence theorem compiles the essence of completeness: a family of130

sets of propositional formulas that holds the propositional consistency property can131

be extended, preserving this property to a set collection that is closed for subsets132

and satisfies the finite character property. The finite character property states that133

a set belongs to the family if and only if each of its finite subsets belongs to the134

family. With the model existence theorem in hands, the Compactness theorem (theory135

PropCompactness ) is obtained easily: given a set of propositional formulas S such136

that all its finite subsets are satisfiable, one considers the family C of subsets in S such137

that all their finite subsets are satisfiable. S belongs to the family C and the latter138

holds the propositional consistence property.139

Theorem 1 (Model Existence (Theorem 3.6.2 in [15])) If C is a propositional140

consistency property, and S ∈ C, then S is satisfiable.141

Theorem 2 (Compactness Theorem (Theorem 3.6.3 in [15])) Let S be a set142

of propositional formulas. If every finite subset of S is satisfiable, so is S.143

We present the most important definitions and proofs used in the formalization.144

The language of propositional formulas is specified through the datatype formula145

in the theory SyntaxAndSemantics . This datatype defines formulas according to the146

standard propositional grammar:147

formula = ⊥ | ⊤ | atom | ¬. formula | formula 2. formula

where 2 ∈ {∧,∨,→}. So, formulas are built inductively from the constants ⊥, ⊤, and148

a set of atoms, negation, conjunction, disjunction and implication. Notice that it is149

necessary to discriminate meta and object logical connectives. For this, the connectives150

in the grammar are succeeded by a dot: “¬. ”, “∧. ”, “∨. ”, and “→ . ”.151

In this grammar, it is not assumed as in [15] that the set of atoms is countable152

infinite. Working without this assumption in our formalization makes it precise when153

1 A family of sets is a propositional consistency property if no set includes a propositional
letter and its negation, no set includes the constant false or the negation of the constant true;
if the double negation of a formula, ¬¬F , belongs to a set in S, then S ∪ {F} belongs to the
family; if a formula F1 ∧ F2 ∈ S then the set {F1, F2} ∪ S belongs to the family; and if the
formula F1 ∨ F2 ∈ S then {F1} ∪ S or {F2} ∪ S belongs to the family.

https://www.isa-afp.org/sessions/prop_compactness/#HintikkaTheory
https://www.isa-afp.org/sessions/prop_compactness/#Closedness
https://www.isa-afp.org/sessions/prop_compactness/#ModelExistence
https://www.isa-afp.org/sessions/prop_compactness/#PropCompactness
https://www.isa-afp.org/sessions/prop_compactness/#SyntaxAndSemantics
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the hypothesis on the enumerability of the set of formulas is essential. In particular,154

this assumption is required to prove the model existence theorem but neither to prove155

Hintikka’s lemma nor to determine the maximality of Hintikka sets.156

Also, in the theory SyntaxAndSemantics , to evaluate the truth-value of proposi-157

tional formulas over an interpretation, we specify the operator t-v-evaluation as usual,158

using evaluations for all kinds of formulas in the datatype v-truth. Since the evalua-159

tion should reflect the mathematical object under study, and the meta-logic to prove160

theorems over this object-logic is the one of Isabelle, the evaluation is built over two161

different elements for false and true.162

For a set of formulas S, the notion of model is specified as an interpretation such163

that all formulas in S evaluate (through the application of t-v-evaluation) to true in164

this interpretation. And, a set of formulas S is satisfiable is specified as a set for which165

a model exists.166

The notion of compactness is specified using the Isabelle specification for finite sets167

and a specification for countable sets.168

The specification of finite sets is imported from the HOL theory for finite sets.169

In particular, we use the characterization finite A if and only if there exist n ∈ N170

and a surjective function f from {m ∈ N | m < n} to A. Also, countable sets are171

specified with the predicate enumeration stating the existence of a surjective function172

with domain N.173

A Hintikka set H can be understood as a syntactically downward saturated set:174

– no atom and its negation can belong to H;175

– neither ⊥ nor ¬.⊤ belong to H;176

– if ¬.¬. F belongs to H then F belongs to H;177

– if F1 ∧ . F2 (α formula) belongs to H, then both F1 and F2 belong to H and,178

– if F1 ∨. F2 (β formula) belongs to H, either F1 or F2 belongs to H.179

This property is specified as HintikkaP in the theory HintikkaTheory. Hintikka’s180

lemma states that Hintikka sets are satisfiable: HintikkaP H −→ satisfiable H.181

The formalization of Hintikka’s lemma is by induction on the structure of the182

formulas in a Hintikka set H by applying the technical theorem HintikkaP_model_aux183

in the above theory. This theorem applies a series of lemmas to evaluate all possible184

cases of formulas in the set H. Indeed, considering the Boolean evaluation IH that185

maps all atoms in H to true and all other letters to false, the most interesting cases of186

the inductive proof are those related to implicational formulas in H and the negation187

of arbitrary formulas in H. These cases are not straightforward since the saturation188

of implicational and negation formulas is not considered in the definition of Hintikka189

sets.190

For an implicational formula in H, say F1 → . F2, it is necessary to prove that its191

evaluation by IH is true; also, whenever ¬. (F1 → . F2) belongs to H, it should be192

proved that the evaluation of the implicational formula is false. The proof is obtained193

by relating such formulas with β and α formulas.194

The second interesting case is the one related to arbitrary negations. In this case,195

it is proved that if ¬. F belongs to H, its evaluation by IH is true, and in the case that196

¬.¬. F belongs to H, considered in the definition of Hintikka sets, its evaluation by IH197

is also true.198

As previously mentioned, these theorems require the definition of propositional con-199

sistency property. Let C be a collection of sets of propositional formulas. We call C a200

https://www.isa-afp.org/sessions/prop_compactness/#SyntaxAndSemantics
https://www.isa-afp.org/sessions/prop_compactness/#HintikkaTheory
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propositional consistency property if it meets the conditions given in the definition con-201

sistenceP for each S ∈ C, as specified below and provided in the theory Closedness202

. In this definition, FormulaAlpha and FormulaBeta correspond respectively to con-203

junctive (α) and disjunctive (β) propositional formulas as defined in [15]. The first and204

second components of α and β formulas are selected with the operators Comp1 and205

Comp2, respectively. The specification of ConsistenceP is included here to clarify how206

the object grammar and the meta-logic are used by discriminating the Isabelle and the207

object logical connectives, with and without dots, respectively.208

209

Definition :: ′b formula set set ⇒ bool where210

consistenceP C =211

(∀S . S ∈ C −→ (∀P . ¬ (atom P ∈ S ∧ (¬.atom P ) ∈ S)) ∧212

⊥ /∈ S ∧ (¬.⊤) /∈ S ∧213

(∀F . (¬.¬.F ) ∈ S −→ S ∪ {F} ∈ C) ∧214

(∀F . ((FormulaAlpha F ) ∧ F∈S) −→ ( S ∪ {Comp1 F , Comp2 F}) ∈ C) ∧215

(∀F . ((FormulaBeta F ) ∧ F∈S) −→ ( S ∪ {Comp1 F} ∈ C) ∨ ( S ∪ {Comp2 F} ∈ C)))216

217

Since the specified grammar does not restrict the set of atoms to be countable, the218

specification of the model existence theorem, given in the theory ModelExistence ,219

adds the assumption of the existence of an enumeration for the set of formulas:220

221

assumes hyp: ∃ g. enumeration (g:: nat ⇒ ′b formula)222

223

The formalization of the model existence theorem requires a series of properties.224

In the theory Closedness , closedness properties of the propositional consistency225

property are proved. Such properties allow us to conclude that if the collection of a set226

of formulas C holds the property, then (C+), which is the closure of C under subsets,227

does it too. See theorem Closed_ConsistenceP in this theory.228

The finite character property is specified in the theory FinitenessClosedCharProp229

, as given below.230

231

finite-character C = (∀S . S ∈ C = (∀S ′. finite S ′ −→ S ′ ⊆ S −→ S ′ ∈ C))232

233

To formalize the finite character property for subset closed families of sets of propo-234

sitional formulas that satisfy the propositional consistency property, it is necessary to235

show a series of properties for extensions of the families of sets. It is proved that a finite236

character property of families of sets of propositional formulas implies subset closeness237

(see lemma finite_character_closed in the above theory).238

Finally, the finite subset closure of a collection of sets C is denoted as C− as specified239

in the definition closure_cfinite in the theory FinitenessClosedCharProp . Then,240

the theorem that states that subset closed propositional consistency properties can241

be extended to satisfy the finite character property is specified as theorem cfinite-242

consistenceP in the theory stating that243

consistenceP C and subset-closed C implies consistenceP C−,244

where subset-closed C means that for all S an element of C, if S′ ⊆ S then S′ ∈ C.245

The proof is by induction on the structure of propositional formulas based on the246

analysis of cases for the possible different types of formula in the sets of the collection247

of sets C that hold the propositional consistency property, lemmas cond_characterP1248

to cond_characterP5 in the theory FinitenessClosedCharProp .249

An interesting corollary of the model existence theorem is that each subset of a250

set of formulas C that satisfies the propositional consistency property built over a251

countable set of propositional letters is satisfiable. This corollary requires proving that252

https://www.isa-afp.org/sessions/prop_compactness/#Closedness
https://www.isa-afp.org/sessions/prop_compactness/#Closedness
https://www.isa-afp.org/sessions/prop_compactness/#Closedness
https://www.isa-afp.org/sessions/prop_compactness/#ModelExistence
https://www.isa-afp.org/sessions/prop_compactness/#Closedness
https://www.isa-afp.org/sessions/prop_compactness/#FinitenessClosedCharProp
https://www.isa-afp.org/sessions/prop_compactness/#FinitenessClosedCharProp
https://www.isa-afp.org/sessions/prop_compactness/#FinitenessClosedCharProp
https://www.isa-afp.org/sessions/prop_compactness/#FinitenessClosedCharProp
https://www.isa-afp.org/sessions/prop_compactness/#FinitenessClosedCharProp
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the set of formulas built over an enumerable set of propositional letters is enumerable.253

The last result is formalized in the theory FormulaEnumeration . This corollary254

corresponds to the presentation of the model existence theorem in [15] except that all255

details concerning the guarantee that the set of formulas built over an enumerable set256

of atoms is indeed enumerable are made explicit in the formalization.257

Now, we discuss the formalization of the Compactness theorem. The auxiliary258

lemma ConsistenceCompactness in the theory PropCompactness is required to apply259

the model existence theorem to obtain the Compactness theorem. This lemma states260

the general fact that the collection of all sets of propositional formulas such that all261

their subsets are satisfiable is a propositional consistency property:262

ConsistenceP {W | ∀A (A ⊆ W ∧ finite A −→ satisfiable A)}
With this lemma in hand, since any countable set of formulas that belongs to C is263

satisfiable as a consequence of the model existence theorem, one obtains the formaliza-264

tion of the theorem Compactness_Theorem in the same theory. As the model existence265

theorem, this theorem requires the assumption that the set of formulas is enumerable.266

Indeed, given a set S of formulas, all whose finite subsets of formulas are satisfiable, it267

is only necessary to prove it belongs to the above collection of sets.268

So, the key technical part of formalizing the Compactness theorem from the model269

existence theorem is the auxiliary lemma ConsistenceCompactness. This lemma is for-270

malized unfolding the definition consistenceP through a series of auxiliary lemmas271

consistenceP_Prop1 to consistenceP_Prop6 specialized to each case in the definition272

of consistenceP. For instance, the auxiliary lemma consistenceP_Prop5 states the re-273

quired satisfiability property for the case of formulas α:274

∀F.(F ∈ W ∧ FormulaAlpha F )
∀A.(A ⊆ W ∧ finite A) −→ satisfiable A

−→
∀A.(A ⊆ W{Comp1 F,Comp2 F} ∧ finite A) −→ satisfiable A

This lemma is formalized by applying another auxiliary lemma (such as for the275

case of the property of formulas β in the definition of consistenceP), the lemma satis-276

fiableUnion2 in the theory PropCompactness  that states the more simple property277

below.278

FormulaAlfa F ∧ satisfiable (A ∪ {F}) −→ satisfiable (A ∪ {Comp1 F, Comp2 F})

Craig’s interpolation theorem is another application of the model existence theorem279

for propositional logic, formalized in Serrano’s Thesis ([47]). In addition, and always280

following Fitting’s textbook elegant presentation ([15]), the Thesis includes formaliza-281

tions in Isabelle/Isar of a variety of results for first-order logic as the model existence282

theorem and the Löwenheim-Skolem theorem, following the seminal Berghofer’s ap-283

plicative approach. All these results were obtained constructively as applications of the284

model existence theorem and the completeness of natural deduction.285

3 Applications of the Compactness Theorem286

This section discusses the formalization of three important applications of the Compact-287

ness theorem for propositional logic, namely, the de Bruijn-Erdös k-coloring theorem,288

König’s lemma, and Hall’s theorem.289

https://www.isa-afp.org/sessions/prop_compactness/#FormulaEnumeration
https://www.isa-afp.org/sessions/prop_compactness/#PropCompactness
https://www.isa-afp.org/sessions/prop_compactness/#PropCompactness
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3.1 De Bruijn-Erdös Graph Coloring Theorem290

The theory k_coloring formalizes the de Bruijn-Erdös k-coloring theorem for count-291

able graphs. Since the few required elements from graph theory are basic notions, like292

definitions of graphs, induced graphs, finite graphs, and coloring, we opt to specify293

them as part of the theory instead of importing robust available theories on graphs294

that bring several results that were not crucial for the current formalization, such as,295

for example, the one developed by Noschinski and Neumann [38].296

We start with the definition of digraphs. Digraphs are elements of type set and the297

Cartesian product of the set by itself, being the first component of a digraph, the set298

of vertices V [G], and the second one E[G], the set of edges. So, a graph G satisfies the299

predicate:300

is_graph G ≡ ∀uv.(u, v) ∈ E[G] −→ u ∈ V [G] ∧ v ∈ V [G] ∧ u ̸= v

Notice how the irreflexibility of the edge relation is obtained from the definition301

above, excluding self-loops.302

A pair of vertices u, v ∈ V [G] is called to be adjacent if (u, v) ∈ E[G] or (v, u) ∈303

E[G].304

The subgraph H induced by a subset of vertices of G is specified as the relation305

below.306

is-induced-subgraph H G ≡ V [H] ⊆ V [G] ∧ E[H] = E[G] ∩ (V [H]× V [H])

The well-definedness of induced subgraphs is proved as a lemma stating that307

is_graph G ∧ is-induced-subgraph HG −→ is_graph H

A digraph is k-colorable, for k ∈ N, if its vertices can be mapped to the set {1, . . . , k}308

avoiding mapping adjacent vertices to the same natural. The concepts of a k-coloring309

and a graph being k-colorable are specified as the following predicates.310

coloring c k G ≡ (∀u.u ∈ V [G] −→ c(u) ≤ k) ∧ (∀uv.(u, v) ∈ E[G] −→ c(u) ̸= c(v))
311

colorable Gk ≡ ∃c. coloring c k G

3.1.1 Informal proof of the de Bruijn-Erdös Theorem312

The de Bruijn-Erdös theorem is stated below. The “pen-and-paper” proof applies the313

Compactness theorem. This version of de Bruijn-Erdös’ theorem diverges from the314

standard one in which the hypothesis refers not only to k-coloration of all finite induced315

subgraphs, but to k-coloration of all finite subgraphs, as sketched in [8] (Chapter 18).316

This difference makes our formalization stronger than the standard proofs that apply317

compactness.318

Theorem 3 (de Bruijn-Erdös) Let G = (V,E) be a countable graph and k be a319

positive integer. If for all finite S ⊆ V , GS is k-colorable, then G is k-colorable.320

Proof Let us fix a set of propositional symbols,

P = {Cu,i | u ∈ V, 1 ≤ i ≤ k}

where Cu,i is interpreted as “the vertex u has color i”. We define three propositional321

formula sets:322

https://www.isa-afp.org/sessions/prop_compactness/#k_coloring
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1. F = {Cu,1 ∨ Cu,2 ∨ · · · ∨ Cu,k | u ∈ V };
2. G = {¬(Cu,i ∧ Cu,j) | u ∈ V, 1 ≤ i, j ≤ k, i ̸= j};
3. H = {¬(Cu,i ∧ Cv,i) | u, v ∈ V, (u, v) ∈ E, 1 ≤ i ≤ k}.

323

The previous sets express the following properties regarding G and k, respectively:324

1. each vertex corresponds to at least a color;
2. no vertex is associated with more than one color; and,
3. adjacent vertices are associated with different colors.

325

Let T = F ∪ G ∪ H. The Compactness theorem is applied to prove that T is326

satisfiable.327

Let S be a finite subset of T and V0 = {u1, . . . , un} be the set of all vertices u such328

that Cu,i for some i, occurs in some formula in S.329

Let GV0
= (V0, E0) be the subgraph of G induced by V0.330

Let c : V0 → [k] be a k-coloring of GV0
.331

We define the interpretation v : P → {T,F} as332

v(Cu,i) =

{
T if u ∈ V0 and c(u) = i,

F otherwise.

We have v(F ) = T for all F ∈ S since c is a k-coloring and F ∈ F ∪ G ∪ H. Thus,333

T is finitely satisfiable; hence, by the Compactness theorem, it is satisfiable.334

Let I : P → {T,F} be an interpretation that satisfies T . We establish a correspon-335

dence c : V → [k] defined as c(u) = i if and only if I(Cu,i) = T.336

Therefore, by the definition of T and since I(F ) = T for all F ∈ T , one has that c is337

a k-coloring of G = (V,E). Indeed, since F and G are satisfiable, to each vertex v ∈ V338

corresponds exactly a color in [k], thus, c is a function. Finally, since H is satisfiable,339

adjacent vertices have different colors. 2340

3.1.2 Formalization of de Bruijn-Erdös k-Coloring Theorem341

This subsection discusses the details of the formalization in the theory k_coloring 342

of the k-coloring theorem following the proof sketch given in Theorem 3.343

The theory includes the following recursive definition of atomic disjunctions of344

length k + 1 for each vertex v. Such disjunctions are required in the construction of345

the sets of formulas F ,G,H and T .346

atomic-disjunctions v 0 = atom (v, 0) |
atomic-disjunctions v (Suc k) = (atom (v,Suc k)) ∨. (atomic-disjunctions v k)

So, the set of formulas T is specified as T G k ≡ FG k ∪ GG k ∪ HG k , where347

the formulas G, and H are specified straightforwardly as below.348

FG k ≡
⋃

v∈V [G]

atomic-disjunction v k

349

GG k ≡ {¬. (atom (v, i) ∧ . atom (v, j)) | v ∈ V [G] ∧ 0 ≤ i, j ≤ k ∧ i ̸= j}
350

HG k ≡ {¬. (atom (u, i) ∧ . atom(v, i)) | (u, v) ∈ E[G] ∧ 0 ≤ i, j ≤ k}

The set of vertices occurring in a formula is specified recursively on the structure351

of formulas and used to define the set of vertices occurring in a finite set of formulas as352

https://www.isa-afp.org/sessions/prop_compactness/#k_coloring
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vertices-set-formulas. In this manner, the set of vertices in a finite subset of formulas353

S ⊆ T Gk, denoted as V0 in the proof of Theorem 3, is built.354

Several auxiliary lemmas are formalized that relate a subset of formulas S, the sets355

of propositional symbols in P, representing vertices and their possible colors, and the356

set T Gk.357

The subgraph of G induced by a subset of vertices V ⊆ V [G] is specified as358

subgraph-aux G V ≡ (V,E[G] ∩ (V × V ))

Then, it is possible to formalize that the subgraph induced by the vertices occurring359

in a finite subset S of formulas in T Gk, denoted as GV0
in Theorem 3, is a finite graph:360

Let S be a finite subset of T , and V0 = {u1, . . . , un} be the set of vertices u such361

that Cu,i, for some i, occurs in some formula in S. From this, it is proved that the362

subgraph of G induced by V0, GV0
= (V0, E0), is also a finite graph. This fact is363

formalized as lemma finite-subgraph below.364

S ⊆ (T Gk) ∧ finiteS −→ finite-graph (subgraph-aux G (vertices-set-formulas S))

The theorem coloring-satisfiable, below, states that a coloring of GV0
enables the365

construction of a model of S.366

S ⊆ (T Gk) ∧ coloring f k (subgraph-aux G (vertices-set-formulas S)) −→ satisfiable S

The formalization of this fact uses the function graph-interpretation below. It allows367

one to show that the function gives a k-coloring of the subgraph induced by the vertices368

in the set of formulas S.369

graph-interpretationGf = (λ(v, i).(if v ∈ V [G] ∧ f(v) = i then T else F))

An interpretation I : P → {T,F} that satisfies T establishes a k-coloring c : V → [k]370

given by c(u) = i if and only if I(Cu,i) = T.371

graph-coloring I k = (λv.(THE i.(t-v-evaluation I (atom (v, i)) = T) ∧ 0 ≤ i ≤ k))

The next step in the formalization is establishing the existence of the graph-coloring372

function when I is a model of T . This fact is formalized using a series of auxiliary lem-373

mas stating the existence and unicity of the color associated with each vertex regarding374

any interpretation I model of T , summarized in the lemma coloring-function:375

u ∈ V [G] ∧ I model (T Gk) −→
∃!i. t-v-evaluation I (atom (u, i) = T ∧ 0 ≤ i ≤ k ∧ graph-coloring I k u = i

The following main result, theorem satisfiable-coloring, establishes that if the set376

of formulas T for a graph G and a natural k is satisfied, then G is k-colorable:377

satisfiable (T Gk) −→ colorable Gk

The proof assumes a model I for T by the satisfiability hypothesis. Applying lemma378

coloring-function, the function graph-coloring will give a unique color i, 0 ≤ i ≤ k for379

each vertex u in the graph. This happens since the evaluation of the formulas F and380

G for the model I will guarantee the existence of a unique atom cu,i that is true.381

Finally, applying another auxiliary lemma (distinct-color), which states that graph-382

coloring gives different colors for adjacent vertices, since I is also a model for H, it383
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is guaranteed that the evaluation of I for adjacent vertices u and v is such that the384

unique atoms cu,i and cv,j evaluated as true are such that i ̸= j.385

To conclude, the de Bruijn-Erdös theorem (Theorem 3), the last theorem formalized386

in theory k_coloring , is proved by applying theorem coloring-satisfiable to prove387

that any finite subgraph H of G induces a finite subset S of formulas of T that is388

satisfiable. Therefore, by the Compactness theorem, T is satisfiable. Consequently,389

applying the theorem satisfiable-coloring G is k-colorable.390

3.2 Formalization of König’s Lemma391

Using the Compactness theorem for propositional logic, we formalize König’s lemma392

for countable trees:393

Any infinite countable finitely branching tree has an infinite path.394

The formal proof steps, given in the theory KoenigLemma , follow the approach395

sketched in [8].396

For this formalization, specialized notions of trees as binary relations are required.397

Such notions are available in the HOL theory and well-developed and specialized theo-398

ries in the Archive of Formal Proofs, such as the theory of abstract reduction [56]. But399

since, for our purposes, only a few related definitions, such as finitely branching tree,400

level, path on trees, and reachability, are required to build a set of formulas express-401

ing König’s lemma, we opt to avoid importing such elaborated theories. Indeed, if we402

import the abstract reduction theory to specify the notion of a tree as a specialized403

binary relation, a series of other theories irrelevant to our formalization exercise are404

imported.405

The definitions and properties regarding trees needed to formalize König’s lemma406

are specialized on (sub)sets of the domain and range of binary relations:407

i) R is irreflexive on A iff ∀x ∈ A, (x, x) /∈ R.408

ii) R is transitive on A iff ∀x, y, z ∈ A ((x, y) ∈ R ∧ (y, z) ∈ R −→ (x, z) ∈ R).409

iii) R is total on A iff ∀x, y ∈ A (x ̸= y −→ (x, y) ∈ R ∨ (y, x) ∈ R).410

iv) An element a ∈ A is a minimum element of A iff ∀x ∈ A (x ̸= a −→ (a, x) ∈ R).411

v) The set of predecessors of a ∈ A is defined as Pr(a) = {x ∈ A | (x, a) ∈ R}.412

The theory KoenigLemma  includes the necessary more specialized definitions for413

the case of interest in which R is a binary relation on A such that for all a ∈ A, the414

set Pr(a) is finite:415

vi) (height) For all a ∈ A, the height of a, height(a), is the number of its predecessors:416

height(a) = |Pr(a)|.

vii) (level) For each integer number n ≥ 0, the n-th level of R is the set of elements of417

A, whose height is n; that is,418

Lv(n) = {a ∈ A | height(a) = n}.

viii) (imm_succ) For each a ∈ A, the set of immediate successors of a, imm_succ(a), is419

defined as420

imm_succ(a) = {y ∈ A | (a, y) ∈ R ∧ height(y) = height(a) + 1}.

https://www.isa-afp.org/sessions/prop_compactness/#k_coloring
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Strict partial and linear orders are defined as usual: let R be a binary relation on421

A. The pair (A,R)422

1. is a strict partial order (SPO) if and only if R is irreflexive and transitive;423

2. is a linear order if and only if it is an SPO and R is a total relation.424

The uniqueness of the minimum in an SPO is given by the following lemma, which425

is formalized in Isabelle: let (A,R) be an SPO. If A has a minimum element, then such426

an element is unique.427

Next, the definition of trees is given.428

Definition 1 (Tree) Let R be a nonempty binary relation on A. The pair T = (A,R)429

is a tree if and only if430

1. T is an SPO;431

2. A has a minimum element, which we call the root of T ;432

3. For all a ∈ A, the set Pr(a) is finite and the restriction of R to Pr(a) is total.433

The elements of A are called the nodes of T .434

A tree T = (A,R) is finite if and only if the set of nodes is finite; otherwise, it is435

infinite. T is finitely branching if and only if for each a ∈ A, the set imm_succ(a) is436

finite.437

Definition 2 (Path) Let T = (A,R) be a tree. A set of nodes B ⊆ A is a path of T438

if and only if (B,R) is a linear order and B is maximal (regarding the subset relation).439

If B is finite, it is called a finite path; otherwise, B is an infinite path.440

Notice that a finitely branching tree having an infinite path has an infinite branch.441

The specifications of such relations are straightforward. For instance, sub-linear orders442

and paths in the theory KoenigLemma  are given below.443

sub-linear-order B A r ≡ B ⊆ A ∧ (strict-partial-order Ar) ∧ (total-on B r)
444

path BAr ≡ (sub-linear-order BAr)∧(∀C.B ⊆ C∧sub-linear-order C Ar −→ B=C)

Specifications of finite- and infinite-path conjugate to path BAr the finiteness and445

infiniteness of B: finite B, and ¬ finite B.446

The following lemmas (Lemmas 1, 2, 3 and 4) are crucial and form the basis to447

prove König’s lemma.448

Lemma 1 (Finiteness of levels in Finitely Branching Trees) Let T = (A,R)449

be a tree. The following statements are equivalent:450

1. T is finitely branching.451

2. For all n ≥ 0, the set Lv(n) is finite.452

Lemma 1 is formalized in the theory KoenigLemma , but from this equivalence,453

only the necessity is essential to formalize König’s lemma (namely, the direction 1454

implies 2). This fact is formalized as the lemma finite-level.455

Lemmas 2 and 3 guarantee the existence of a path from any node to the root of a456

tree and the non-emptiness of each level in a finitely branching infinite tree, respectively.457

They are formalized as lemmas path-to-node and all-levels-non-empty.458

https://www.isa-afp.org/sessions/prop_compactness/#KoenigLemma
https://www.isa-afp.org/sessions/prop_compactness/#KoenigLemma


Combinatorial Applications of the Compactness Theorem 13

Lemma 2 (Root Reachability in Trees) Let T = (A,R) be a tree. If n ≥ 0 and459

x ∈ Lv(n + 1) then for all k, 0 ≤ k ≤ n, there is yk such that (yk, x) ∈ R and460

yk ∈ Lv(k).461

Lemma 3 (Non-emptiness of Levels) Consider T = (A,R) a finitely branching462

infinite tree. Thus, for all n ≥ 0, Lv(n) ̸= ∅.463

Finally, Lemma 4, formalized as emptyness-inter-diff-levels, states that the elements464

in the same set of predecessors are at distinct levels.465

Lemma 4 (Emptyness of Level Intersection) Let T = (A,R) be a tree. Suppose466

that (x, z) ∈ R, (y, z) ∈ R, and x ̸= y. If x ∈ Lv(n) and y ∈ Lv(m) then Lv(n) ∩467

Lv(m) = ∅.468

3.2.1 Informal proof of König’s Lemma469

In this section, we discuss the “pen-and-paper” proof of König’s lemma (Theorem 4)470

obtained as a consequence of the Compactness theorem and using previous results.471

Theorem 4 (König’s Lemma) Every finitely branching infinite (countable) tree has472

an infinite branch.473

Proof Let T = (A,R) be a finitely branching infinite countable tree. Consider the
following set of propositional symbols indexed by the vertices of T :

P = {Bu | u ∈ A}.

From the set P, one can define a set of formulas T , such that if T is satisfiable then
for any interpretation I, which is model of T , the set of vertices B is an infinite path
of T :

B = {u ∈ A | I(Bu) = T}

T is given by the union of the following three sets of propositional formulas.474

1. For each n ∈ N,
F = {

∨
u∈Lv(n)

Bu | n ∈ N},

where
∨

u∈Lv(n) Bu is the disjunction of the atomic formulas corresponding to the475

elements of the level Lv(n), which is a finite set by the Lemma 1.476

2. G = {Bu −→ Bv | u, v ∈ A, (v, u) ∈ R},477

3. H = {¬(Bu ∧Bv) | u, v ∈ Lv(n), u ̸= v, n ∈ N}.478

The previous sets allow the characterization of an infinite path in a tree. Indeed, if a479

set B of vertices of T satisfies such sets, then for any n ∈ N, there is at least one vertex480

of T in the level n which belongs to B; every predecessor of any element of B belongs481

to B, and B has only a vertex in the level n.482

Now, we show that the set T = F∪G∪H is satisfiable by applying the Compactness483

theorem.484

Let S be a finite subset of T . Since S is finite, the set

N = {u ∈ A | Bu occurs in some formula of S}
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is also finite; consequently, the set of the heights of vertices from N has a maximum485

element h. Additionally, one has that Lv(h + 1) ̸= ∅ since T is infinite and finitely486

branching (Lemma 3).487

Consider t ∈ Lv(h+ 1) and define the interpretation I : P → {T,F} as,488

I(Bu) =

{
T , if (u, t) ∈ R

F , otherwise.

Notice that, I(J) = T for every formula J ∈ S. In fact:489

1. If J ∈ F then J =
∨

u∈Lv(n) Bu, which corresponds to the disjunction of the490

atomic formulas associated with the vertices of the level n, for some n ≤ h. Since491

the vertices that occur in J have height n < h + 1, there exists u ∈ Lv(n) such492

that (u, t) ∈ R (Lemmas 3, 2). Consequently, I(Bu) = T and I(J) = T.493

2. If J ∈ G then there exist u,w ∈ A such that J = Bu −→ Bw and (w, u) ∈ R. If494

I(J) = F then I(Bu) = T and I(Bw) = F. Consequently, (u, t) ∈ R and (w, t) /∈ R495

which is impossible considering that (w, u) ∈ R and R is transitive relation. Thus,496

I(J) = T.497

3. If J ∈ H then there exist u,w ∈ Lv(n), for some n ≥ 0, such that u ̸= w and498

J = ¬(Bu ∧ Bw). Since u and w belong to the same level, one has that (u, t) /∈ R499

or (w, t) /∈ R (Lemma 4). Consequently, I(Bu) = F or I(Bw) = F, and I(J) = T.500

Therefore, T is finitely satisfiable and, as a consequence of the Compactness theo-501

rem, T is satisfiable.502

Let I : P → {T,F} be a model for T . Then,

B = {u ∈ A | I(Bu) = T}

is an infinite path of T :503

Since I satisfies F and H, one has that, for each level n, the intersection B∩Lv(n)504

is a singleton vertex. In the following, we show that (B, R) is a total and maximal505

relation and B is infinite.506

(a) (B, R) is a total relation: consider u,w ∈ B such that u ̸= w. Assume that507

height(u) < height(w). Let n = height(u) and x be the predecessor of w at508

level n. Then, Bw −→ Bx ∈ G, hence I(Bw −→ Bx) = T. Since I(Bw) = T,509

I(Bx) = T. Therefore, x ∈ B and, since u, x ∈ Lv(n), one concludes that u = x.510

Thus, (u,w) ∈ R. The case height(w) < height(u) is proved analogously. Therefore,511

one concludes that (B, R) is total.512

(b) (B, R) is maximal: we prove that if B ⊆ B′ and (B′, R) is total then B′ ⊆ B. Let513

x ∈ B′, n = height(x) and u be a vertex that belongs to the intersection of B and514

the vertices at level Lv(n). Since u ∈ B′ and (B′, R) is total, if u ̸= x, then either515

(u, x) ∈ R or (x, u) ∈ R, which is impossible since, in a strict order, comparable516

elements with a finite number of predecessors are at different levels. Therefore,517

x = u, which implies B′ ⊆ B.518

(c) B is infinite: since I satisfies F , it is enough to prove that for all n ≥ 0, Lv(n) ̸= ∅.519

This implies that there exists u such that u ∈ B ∩ Lv(n), therefore, B is infinite.520

Suppose there exists n such that Lv(n) = ∅. This implies that for all m > n,521

Lv(m) = ∅ too. Consequently, since T is finitely branching, it would be finite. To522

conclude, one also needs to consider that Lv(n) ∩ Lv(m) = ∅ for all n ̸= m, and523

therefore
⋃

n∈N B ∩ Lv(n) is infinite. 2524
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It is relevant to redundantly stress here that although there are several formal-525

izations of König’s lemma, as those discussed in the related work (Section 4.2), the526

technique of building a set of propositional formulas specifying the existence of infinite527

paths in trees, then building models for the countable case and finally applying the528

Compactness theorem has not been formalized before.529

3.2.2 Formalization of König’s Lemma530

In this subsection, we explain the crucial steps in formalizing this proof.531

The specification uses the recursive constructor disjuction-nodes of the disjunction532

of atoms below.533

disjuction-nodes [ ] = F

disjuction-nodes (v#D) = (atom v) ∨. (disjuction-nodes D)

T is defined as T ≡ (F Ar)∪ (GAr)∪ (HAr), where the sets of formulas F ,G,H,534

and T are specified below. Notice that H is built as the union of all the sets Hn of535

negations of formulas of the form (Bu ∧ Bv) for nodes at the same level (n). The536

operator set-to-list transforms sets into lists.537

F ≡
⋃

n .{disjunction-nodes(set-to-list (level Ar n)}
G ≡ {(atom u) → . (atom u) | u, v ∈ A ∧ (v, u) ∈ r}
Hn ≡ {¬. ((atom u) ∧ . (atom v)) | u, v ∈ (level Ar n) ∧ u ̸= v}
H ≡

⋃
n .Hn Ar n

The operator maximum-height specifies the maximum height of the nodes occurring538

in a set of formulas. It uses nodes-set-formulas, which defines the union of the nodes539

in a finite set of formulas.540

maximum-height Ar S = Max (
⋃

x ∈ nodes-set-formulas S.{height Axr})

Let S be a set of formulas, and h be the maximum height of the set of nodes541

occurring in the formulas of S. The following function returns a node at level Lv(h+1).542

node-sig-level-max Ar S = SOME u.u ∈ (level Ar ((maximum-height Ar S) + 1)

The next step in the formalization is proving a lemma, satisfiable-path, that specifies543

that any finite subset S of T is satisfiable:544

infinite-tree Ar ∧ finitely-branching Ar ∧ S ⊆ (T Ar) ∧ finite S −→ satisfiable S

The formalization of the above result consists of building a straightforward model545

in the following manner: first, one selects a node, say u, in the tree at level h + 1,546

where h is the maximum level of the set of nodes occurring in the formulas of S;547

then, for the interpretation the truth value of all nodes (atomic formulas) except the548

predecessors of u, which have truth value true, is false. This is built as the interpretation549

path-interpretation Ar = (λv.(if (v, u) ∈ r then T else F)).550

In this way, using lemmas 3, 2 and 4, in the theory KoenigLemma , all-levels-non-551

empty, path-to-node and emptyness-inter-diff-levels, respectively, one concludes that552

such an interpretation holds in S. Therefore, T is finitely satisfiable, and so is satisfiable553

by the Compactness theorem.554

https://www.isa-afp.org/sessions/prop_compactness/#KoenigLemma
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The following definition of the set of nodes B, which are true in an interpretation I,555

gives the construction of the infinite path used in the proof of König’s lemma (Theorem556

4): BAI ≡ {u | u ∈ A ∧ t-v-evaluation I (atom u) = T}. The following two lemmas557

describe the crucial properties of B.558

The first Lemma, intersection-branch-set-nodes-at-level, states that if B is built559

from an infinite finitely branching tree and I is an interpretation that satisfies F ,560

then B has at least a node in each level of the tree. The formalization is obtained by561

induction on the number of nodes at any tree level.562

infinite-tree Ar ∧ finitely-branching Ar ∧ ∀F ∈ (F Ar). t-v-evaluation IF = T

−→ ∀n.∃x.x ∈ level Ar n ∧ x ∈ (BAI)

The second Lemma, intersection-branch-emptyness-below-height, states that for any563

tree and interpretation I that satisfies H, the set B has at most one node with truth564

value true at each level of the tree. The formalization follows by contradiction.565

∀F ∈ (HAr). t-v-evaluation I F = T ∧ x, y ∈ (BAI) ∧ x ̸= y ∧
x ∈ level Ar n ∧ y ∈ level Arm −→ n ̸= m

From the direct application of the previous two lemmas, one formalizes another566

result, intersection-branch-level, stating that if the tree is an infinite finitely branching567

tree and the interpretation I is a model of F and H, the set B has only one node at568

each level of the tree:569

∀F ∈ (F Ar)∪ (HAr). t-v-evaluation I F = T −→ ∀n.∃u.(BAI)∩ level Ar n = {u}

The following simple definitional Lemma, predecessor-in-branch, states that for any570

tree and interpretation I that satisfies G, all predecessors of a node in B also belong to571

B.572

∀F ∈ (GAr). t-v-evaluation I F = T ∧y ∈ (BAI)∧(x, y) ∈ r∧y ∈ A −→ x ∈ (BAI)

To conclude, it is necessary to guarantee that for any infinite finitely branching573

three and an interpretation I of T , (BAI) is indeed an infinite path. The first step is574

proving that it is indeed a path. This fact is specified as lemma is-path, formalized by575

applying all previous lemmas.576

infinite-tree Ar ∧ finitely-branching Ar ∧ ∀F ∈ (T Ar). t-v-evaluation I F = T

−→ path (BAI)Ar

The second step, formalized as lemma infinite-path, is to prove the path above,577

built from a model of F , is indeed infinite.578

infinite-tree Ar ∧ finitely-branching Ar ∧ ∀F ∈ (F Ar). t-v-evaluation I F = T

−→ infinite (BAI)

Finally, the formalization of König’s lemma (Theorem 4), the last result in theory579

KoenigLemma , is obtained by firstly applying the lemma satisfiable-path that proves580

that any finite subset S of an infinite finitely branching tree satisfies T . After that, the581

Compactness theorem is applied to conclude that the tree satisfies T . In the sequence,582

assuming that I is a model of T for the tree and building the set B, one concludes that583

the tree has an infinite path.584
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3.3 Formalizations of Hall’s Theorem585

This subsection briefly discusses the application of the Compactness theorem in the586

Isabelle/HOL formalizations of Hall’s theorem for countable sets and graphs described587

in detail in [48] and [49].588

The Hall’s theorem, also called “marriage theorem,” proved primarily by Philip Hall589

[24], provides necessary and sufficient conditions to choose a distinct representative for590

each set in a finite family of finite sets A over elements in a set S.591

Given S, an arbitrary set, and {Si}i∈I a collection of not necessarily distinct subsets592

of S with indices in the set I, a function f : I →
⋃

i∈I Si is a system of distinct593

representatives (SDR) for {Si}i∈I if:594

1. for all i ∈ I, f(i) ∈ Si, and;595

2. f is an injective function.596

From the definition of an SDR, one can state Hall’s theorem for sets as follows.597

Theorem 5 (Hall’s Theorem | finite case) Consider an arbitrary set S and a598

positive integer n. A finite collection {S1, S2, . . . , Sn} of finite subsets of S has an599

SDR if and only if the so-called marriage condition (M) below is satisfied.600

For every 1 ≤ k ≤ n and an arbitrary set of k distinct indices
1 ≤ i1, . . . , ik ≤ n, one has that |Si1 ∪ . . . ∪ Sik | ≥ k. (M)601

Hall’s theorem is a landmark result that is equivalent to several other significant602

theorems in combinatory and graph theory (cf. [7], [8], [42]), namely: Menger’s theorem603

(1929), König’s minimax theorem (1931), König–Egerváry theorem (1931), Dilworth’s604

theorem (1950), Max Flow-Min Cut theorem (Ford-Fulkerson algorithm), among oth-605

ers. Consequently, a complete formalization of Hall’s theorem gives rise to formally606

proving those equivalent results. Considering Isabelle/HOL theorem prover, Jiang and607

Nipkow [30] formalized Hall’s theorem by implementing both Halmos and Vaughan’s608

[25] and Rado’s [41] techniques.609

More general versions of Hall’s theorem were established [41]. In particular, Hall’s610

theorem, as enunciated in Theorem 6, holds for a countable collection of finite subsets611

{Si}i∈I of a set S.612

Theorem 6 (Hall’s Theorem | countable case) Let S be an arbitrary set and I613

an enumerable set of indices of finite subsets of S. The family {Si}i∈I has an SDR if614

and only if the condition (M∗) below holds.615

For every finite subset of indices J ⊆ I, one has that |
⋃

j∈J Sj | ≥ |J |. (M∗)616

This theorem is formalized in the theory Hall_Theorem .617

As another application of the Compactness theorem for propositional logic, Serrano618

et al. formalized Theorem 6 in Isabelle/HOL. Such a development combines the for-619

malization of the Compactness theorem as in [47], described in Section 2, and of Jiang620

and Nipkow’s for the finite case of Hall’s theorem. The formal proof of the countable621

case of Hall’s theorem in Isabelle/HOL was recently published in [48] and gives rise to622

provide mechanisms to formally establish general versions of results that are equivalent623

to Theorem 6.624

For instance, besides the set-theoretical version of Hall’s theorem for countable625

families of sets 6, another well-known version, Hall’s theorem for graphs, was also626

formalized.627

https://www.isa-afp.org/sessions/prop_compactness/#Hall_Theorem
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Theorem 7 (Hall’s Theorem Graph Version | countable case) Let G = ⟨X,Y,E⟩628

be a digraph such that the set of vertices X ∪Y is countable, the set of edges holds E ⊆629

X×Y , and for each vertex x ∈ X, the set of neighborhoods of x N(x) = {y | (x, y) ∈ E}630

is finite. Then G contains a perfect matching covering the set of vertices X if and only631

if (M†) below holds.632

For every finite subset of vertices J ⊆ X, one has that |
⋃

j∈J N(j)| ≥ |J |. (M†)633

This theorem is formalized in the theory Hall_Theorem_Graphs .634

Previously, we cited some combinatorial theorems equivalent to Hall’s theorem.635

Depending on the result, the proof of such an equivalence can be adapted to either the636

set-theoretical or graph-theoretical versions. For example, König–Egerváry theorem637

states that the minimum cover in a finite bipartite graph has the same cardinality as a638

maximum matching. Thus, if we assume Hall’s theorem for finite graphs, one possible639

way to infer König–Egerváry theorem will consist of building a reduction from the640

latter to the former. Considering the nature of König–Egerváry theorem, it is clear641

that the graph-theoretical version of Hall’s theorem is more appropriate than the set642

version to establish the equivalence between these theorems.643

In [49], by applying authors’ development in [48], the infinite graph-theoretical644

version of Hall’s theorem was formalized. The mechanization focuses on maintaining645

specifications and proofs as closely as possible to textbooks since our primary objective646

was to increase mathematicians’ interest in using interactive proof assistants. Although647

this, the specification also includes a concise and more automatized proof using locales,648

which can be seen at the end of the theory Hall_Theorem_Graphs .649

Interestingly, other combinatorial well-known results equivalent to Hall’s theorem650

in the finite case are not straightforwardly equivalent in the infinite case; for instance,651

the infinite version of König-Egerváry theorem that as reported in [3] cannot be inferred652

from the Compactness theorem. Thus, another of the aspects we are interested in is to653

explore if possible restricted variations of infinite versions of König-Egerváry theorem654

can be obtained as a consequence of the Compactness theorem.655

4 Related Work656

4.1 Formalizations of the Compactness Theorem657

As mentioned in Subsection 2.2, other proofs in Isabelle/HOL of the Compactness658

theorem were given by Berghofer [5] and by Michaelis and Nipkow. The former fol-659

lows Smullyan’s presentation [55] as presented in Fitting’s textbook [15] in the more660

general setting of propositional logic. The latter is part of IsaFOL [37]. In general,661

formalizations of the Compactness theorem belong to collections of developments for662

propositional and first-order logic, as is the case of IsaFOL (e.g., [17], [46], [16]). In663

particular, Michaelis and Nipkow formalized proof systems for propositional logic, such664

as sequent calculus, natural deduction, Hilbert systems, and resolution; they added665

to IsaFOL proofs of soundness, completeness, cut-elimination, interpolation, and the666

model existence theorem. However, the formalization of compactness follows a dif-667

ferent approach, as the one of this paper, which is based on an enumeration of all668

formulas and saturation [37]. Michaelis and Nipkow focus on logic properties, and for669

this, they specify translations between these proof systems, allowing the transferring670

of soundness and completeness from each of these systems to the others. One of their671

https://www.isa-afp.org/sessions/prop_compactness/#Hall_Theorem_Graphs
https://www.isa-afp.org/sessions/prop_compactness/#Hall_Theorem_Graphs
https://github.com/IsaFoL/IsaFoL
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formalizations of compactness follows Enderton’s enumeration and formula saturation672

approach [13]; from this formalization, they infer completeness for natural deduction673

and sequent calculus. As in the current paper, building Hintinkka sets and specifying674

the propositional consistency property, they prove the model existence theorem and675

formalize compactness as an application of this theorem. Also, directly applying the676

model existence theorem, they present alternative formalizations of the completeness677

of the sequent calculus and Hilbert systems.678

Among a variety of solid formal developments in classical logic, which provide el-679

ements for formalizations of theorems as those treated in this paper, one can include680

Shankar’s pioneering formalizations of the Church-Rosser and the first Gödel incom-681

pleteness theorem in the Boyer-Moore theorem prover [51]. Also, it deserves to mention682

Harrison’s formalization in HOL Light of essential results such as the compactness and683

the Löwenheim-Skolem theorems [26]. Harrison’s formalization of the propositional684

Compactness theorem is also for the countable case and applies Zorn’s lemma to ex-685

tend satisfiable sets to maximal satisfiable sets of propositional formulas (as in the686

proof given in Enderton’s textbook [13]).687

4.2 Formalizations of König’s lemma, and de Bruijn-Erdös and Hall’s Theorems688

Nowadays, proof assistants include robust proof engines and elaborated mathematical689

libraries that make the formalization of König’s lemma an easy routine exercise. An690

earlier proof of König’s lemma in the Boyer-Moore theorem prover is reported by691

Kaufmann in [31]. The formalization uses the NQTHM extension of this prover to deal692

with quantification by applying the technique of (event) Skolemization. The existence693

of an infinite path in a finitely branching infinite tree is obtained using the predicate “for694

any node with infinite descendants there exists a successor with infinite descendants.”695

Bancerek developed another earlier formalization of this theorem in Mizar [4]. The696

formalization states the lemma, proving the existence of an infinite branch whenever697

the tree has arbitrary long finite chains.698

There are no other formalizations in Isabelle/HOL of König’s lemma based on699

compactness. From these formalizations, there are two interesting ones based on coin-700

ductive techniques. One of them, by Traytel and Popescu, available in the standard701

Isabelle distribution (theory Koenig.thy), uses definitional commands for codatatypes,702

corecursion, and conduction implemented in [6], from mechanisms coined out in [57]. It703

defines “finitely branching countable trees” and proves co-inductively that any infinite704

tree has infinite paths. The notion of an “infinite” tree is coinductively defined as a tree705

for which a descendent tree exists that is also “infinite.” This allows a straightforward706

application of coinduction to infer the existence of a König’s path (specified as a stream707

of node labels) for any such “infinite” tree. This approach additionally requires proving708

that trees with infinite nodes also have König’s paths. The second one, by Lochbihler, is709

given as an example (in the theory Koenigslemma.thy) part of the library Coinductive710

[34]. It first defines infinite finitely-branching connected graphs as connected graphs711

with an infinite set of nodes and nodes of finite degree. It then coinductively proves712

that infinite, finitely-branching graphs have infinite paths. Such paths are coinductively713

defined using conductive lists, also available in this library.714

Despite the fact of the existence of excellent libraries on graph theory for different715

interactive theorem provers (e.g., those related to Gonthier’s formalization of the four-716

color theorem for planar graphs in Coq [18,20,19]), to the best of our knowledge there717
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are no formalizations of the de Bruijn-Erdös k-coloring theorem, neither for the finite718

nor for the countable case.719

Considering the finite version of Hall’s theorem, Romanowicz and Grabowski [44]720

reported the first formalization of this result in Mizar. Jiang and Nipkow [30] presented721

two formalizations in Isabelle/HOL: in addition to a formalization of Rado’s proof722

([41]), also used in Mizar, the Isabelle/HOL development formalizes Vaughan’s proof723

([25]). Also, a formalization in Coq applies Dilworth’s decomposition theorem and bi-724

partitions in graphs [52]. Dilworth’s theorem is formalized in Mizar in [45]. Recently,725

Gusakov, Mehta, and Miller [21] reported different formalizations in Lean of the finite726

version of Hall’s theorem; the first, in terms of indexed families of finite subsets, the727

second, in terms of the existence of injections that saturate binary relations over finite728

sets and, the third, in terms of matchings in bipartite graphs. Related combinatorial729

results are reported in recent works by Doczkal et al. in their graph theory Coq library730

(e.g., [10], [12], and [11]). Additionally, Singh and Natarajan formalized in Coq other731

combinatorial results as the perfect graph theorem and a weak version of this theorem732

(e.g., [53], [54]).733

Adaptations to the infinite case from theorems equivalent to the finite case of Hall’s734

marriage theorem may be elaborated. Moreover, such adaptations would not necessarily735

be derivable from the Compactness theorem. An example is König’s duality theorem736

that states that in every bipartite graph G = ⟨X,Y,E⟩, there exists a matching M ⊆ E737

such that selecting one vertex from each arc in M one has a cover of the graph [1,738

3]. This theorem is a strong form of the König-Egerváry theorem, stating that in a739

finite bipartite graph, the size of a maximal matching is equal to that of a minimal740

cover [33]. The key difference of the duality theorem is that such a cover of the graph741

cannot be extracted from any matching; namely, given any matching of the graph, it742

is possible to build a cover of the same cardinality as the cardinality of the matching,743

but not that covers the graph entirely. So, the notion of König cover came to arise,744

which is defined as a cover of the graph that consists of a selection of one vertex from745

each arc of a matching.746

Lifting results from the finite to the infinite through the application of compactness747

(of König’s lemma) corresponds to a recursive construction of a procedure that produces748

the target solution in the degree of unsolvability of the halting problem [3]. Such a749

recursive construction is possible for Dilworth’s theorem (restricting the maximal anti-750

chains in infinite partial ordered sets to be finite - [9], see also Sec. 2.5 in [27]) but not751

for König’s duality theorem. Indeed, Aharoni et al. [3] proved that the complexity of752

constructing covers exceeds the complexity of the halting problem; it is even a problem753

of higher complexity than answering all first-order questions about arithmetic. Also,754

they proved that the Compactness theorem and König’s lemma do not suffice to prove755

the duality theorem and other related results in matching theory.756

A remarkable Isabelle recent development by Lochbihler et al. [35] is a formalization757

of the min-cut max-flow theorem over countable infinite networks following Aharoni et758

al. proof technique in [2]. The proof technique is not based on applying the Compactness759

theorem, making exploring alternatives to address this problem and related problems760

interesting through the approach used in the current paper.761

There are two formalizations of the countable set-theoretical version of Hall’s the-762

orem: one by the authors detailed in [48], and another by Gusakov, Mehta, and Miller763

presented in [21]. Also, we formalized a countable graph-theoretical version derived764

from the set-theoretical formalization presented in [49]. The distinguishing feature of765

our formalization in Isabelle/HOL is the application of the Compactness theorem. In766
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Table 1 Theories of the development - quantitative data

Theory Name Line
Numbers

Number of Proved Formulas
Lemmas Corollaries Theorems

SyntaxAndSemantics  691 17 3
UniformNotation  694 29
Closedness  180 7 1
FinitenessClosedCharProp  337 7 2
MaximalSet  235 5 1 4
HintikkaTheory  429 8 3 1
MaximalHintikka  158 6 1
BinaryTreeEnumeration  172 11
FormulaEnumeration  129 4 3 1
ModelExistence  147 1 2 4
Subtotal 3172 95 9 17
PropCompactness  374 15 1
Total 3546 110 9 18

Applications
k_coloring  881 30 3
KoenigLemma  1966 66 1
Hall_Theorem  997 44 4
Hall_Theorem_Graphs  461 7 3

the Lean formalization, the authors use an inverse limit version of the König’s lemma.767

This lemma states that if {Xi}i∈N is an indexed family of nonempty finite sets with768

functions fi : Xi+1 → Xi, for each i ∈ N, then there exists a family of elements769

x ∈
∏

i Xi such that xi = fi(xi+1), for all i ∈ N. König’s lemma follows from this770

infinite limit version by choosing as set Xi the paths of length i from the root vertex771

v0 in a tree. So, the function fi maps paths in Xi+1 into the paths without their772

last arc, which are paths that belong to Xi. The inverse limit consists of the infinite773

chain of functions f1, f2, . . .. König’s lemma is applied to prove the countable version774

of Hall’s theorem by taking Mn as the set of all matchings on the first n indices of I775

(i.e., the set of all possible SDRs for the sets S1, . . . , Sn), and fn : Mn+1 → Mn as the776

restriction of a match to a smaller set of indices. Since the marriage condition holds for777

the finite indexed families, each Mn is nonempty, and by König’s lemma, an element778

of the inverse limit gives a matching on I.779

5 Conclusions and Future Work780

We presented a complete formalization of the propositional Compactness theorem781

based on the construction of models. The Compactness theorem was applied to build782

full and constructive proofs of three relevant applications: Hall’s theorem for countable783

sets and graphs, de Bruijn-Erdös theorem for countable graphs, and König’s lemma.784

The whole Isabelle/HOL development discussed in this paper, available through the785

link Compactness Theory , consists of a directory called ModelExistence with all re-786

quired elements to prove the model existence theorem. The total number of lines in the787

theories related to the logical notions and properties needed on the proof of the model788

existence theorem is 3218, in which proofs of seventeen theorems are included (see the789

“subtotal” row in the Table 1). The theory Compactness uses the formalization of the790

model existence theorem and adds 15 lemmas to formalize the Compactness theorem.791

https://www.isa-afp.org/sessions/prop_compactness/#SyntaxAndSemantics
https://www.isa-afp.org/sessions/prop_compactness/#UniformNotation
https://www.isa-afp.org/sessions/prop_compactness/#Closedness
https://www.isa-afp.org/sessions/prop_compactness/#FinitenessClosedCharProp
https://www.isa-afp.org/sessions/prop_compactness/#MaximalSet
https://www.isa-afp.org/sessions/prop_compactness/#HintikkaTheory
https://www.isa-afp.org/sessions/prop_compactness/#MaximalHintikka
https://www.isa-afp.org/sessions/prop_compactness/#BinaryTreeEnumeration
https://www.isa-afp.org/sessions/prop_compactness/#FormulaEnumeration
https://www.isa-afp.org/sessions/prop_compactness/#ModelExistence
https://www.isa-afp.org/sessions/prop_compactness/#PropCompactness
https://www.isa-afp.org/sessions/prop_compactness/#k_coloring
https://www.isa-afp.org/sessions/prop_compactness/#KoenigLemma
https://www.isa-afp.org/sessions/prop_compactness/#Hall_Theorem
https://www.isa-afp.org/sessions/prop_compactness/#Hall_Theorem_Graphs
https://www.isa-afp.org/entries/Prop_Compactness.html
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Table 1 also contains information about the theories related to the discussed applica-792

tions. It is remarkable to notice that the elements required to apply the Compactness793

theorem to prove König’s lemma are almost twice the size of the other applications.794

Also, notice that the formalization of Hall’s theorem for countable graphs is smaller795

since this uses directly the set-theoretical version of Hall’s theorem without building796

any model.797

As mentioned in the section on related work (Subsection 4.2), potential applications798

would lift combinatorial results from the infinite to the countable cases. Exploring such799

extensions is of remarkable interest since it is well-known that the finite cases of Hall’s800

and de Bruijn-Erdös theorems are equivalent to other relevant combinatorial theorems.801

Data Availability Declaration802

The formalizations discussed in this paper are openly available in the Isabelle Archive803

of Formal Proofs as [50] through the permanent link https://www.isa-afp.org/entries/804

Prop_Compactness.html805
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