
Computational Verification of Anti-Unification

Mauricio Ayala-Rincón

RISC Forum (RISC/JKU), Hagenberg, 28th April 2025

Departamentos de Matemática & Ciência da Computação

† Research supported by the Brazilian agencies CAPES and CNPq

Joint Work With

Maria Júlia Dias Lima Mariano Miguel Moscato

Thaynara Arielly de Lima Temur Kutsia 1 / 31

Outline

1. Equational Reasoning

2. Unification

3. Anti-unification

4. Syntactic anti-unification

5. PVS Verification

6. Conclusions and Future Work

2 / 31

Equational Reasoning

Equational Problems

• Equality check: s = t?

• Matching: There exists σ such that sσ = t?

• Unification: There exists σ such that sσ = tσ?

• Anti-unification: There exist r , σ and ρ such that

rσ = s and rρ = t?

s and t, and u are terms in some signature and σ and ρ are

substitutions.

3 / 31

Unification

Unification modulo

Unification

Goal: find a substitution that identifies two expressions.

s ?
=

sσ≈ tσ

t

σ σ

4 / 31

Syntactic Unification

• Goal: to identify two expressions.

• Method: replace variables by other expressions.

Example: for x and y variables, a and b constants, and f a function

symbol,

• Identify f (x , a) and f (b, y)

• solution {x/b, y/a}.

5 / 31

Syntactic Unification

• Goal: to identify two expressions.

• Method: replace variables by other expressions.

Example: for x and y variables, a and b constants, and f a function

symbol,

• Identify f (x , a) and f (b, y)

• solution {x/b, y/a}.

5 / 31

Syntactic Unification

Example:

• Solution σ = {x/b} for f (x , y) = f (b, y) is more general than

solution γ = {x/b, y/b}.

σ is more general than γ:

there exists δ such that σδ = γ;

δ = {y/b}.

6 / 31

Syntactic Unification

Relevant questions:

• Decidability, Unification Type, Correctness and Completeness.

• When decidable, Complexity.

• With adequate data structures, there are linear solutions

(Martelli-Montanari 1976, Petterson-Wegman 1978).

Syntactic unification is of type unary and linear.

7 / 31

https://doi.org/10.1145/357162.357169
https://core.ac.uk/download/pdf/82457046.pdf

Our Formalizations on Equational Reasoning

Anti-unification First-order syntax Nominal logic, Nominal Reasoning, · · ·

Stickel
AC-Unif.

IJCAR 1975
J.ACM 1981

Fages
AC-unif.

CADE 1984
JSC 1987

Pitts& Gabbay
Nominal Logic

Inf.&C.
2003

Urban et al.
Form. Nominal

Unif.
Isabelle/HOL
TCS 2004

Contejean
Form.

AC-Match.
Coq

RTA 2004

Calvès&Fernández
Nom. Unif.

Poly
WoLLIC 2008

Alpuente et al.
Anti-Unif.
Inf.&C.
2014

Cerna&Kutsia
Unital

Anti-Unif.
FSCD 2020

Levy&Villaret
Nom. Unif.

O(n2)
RTA 2010

Silva et al.
Form.

AC-Unif.
PVS

FSCD 2022

González et al.
Anti-Unif.
modulo

Absorption
IJCAR 2024

Reynolds
Machine
Intell.
1970

Plotkin
Machine
Intell.
1970

Oliveira et al.
Form.

Nom.-Unif.
PVS

LSFA 2016

Carvalho et al.
Form.

Nom. C-Unif.
Coq

FroCoS 2017
TCS 2019

Carvalho et al.
Form.

Nom. C-Match.
Coq

LoPSTR 2017

Silva et al.
Form.

Nom. C-Unif.
PVS

LoPSTR 2019
MSCS 2021

Cerna, Kutsia
Anti-Unif
Survey

IJCAI 2023

Silva et al.
Form.

Nom. AC-Match.
PVS

CICM 2023

Silva et al.
Form.

AC-Unif.
PVS

JAR 2024

Ayala-Rincón et al.
Form.

Anti-Unif.
PVS

NASA-FM 2025

Timeline on the formalisation of equational reasoning

1970 1975 1985 2000 2005 2010 2015 2020 20220 2024 2025

8 / 31

Anti-unification

Anti-unification

Anti-unification

Goal: find the commonalities between two expressions.
s ≜

r

t

rσ rρ

9 / 31

Anti-Unification

s

f

f

b

t

f

f

b b

Generalizer

f

u v

10 / 31

Anti-Unification

s

f

f

b

t

f

f

b b

A less general
generalizer

f

f v

u b

11 / 31

Anti-Unification

s

f

f

b

t

f

f

b

Least general
generalizer (lgg)

f

f u

u b

12 / 31

Anti-unification - History

¤ Introduced by Gordon Plotkin [Plo70] and John Reynolds

[Rey70]

� First-order: syntactic [Baa91]; C, A, and AC [AEEM14];

idempotent [CK20b], unital [CK20c], semirings [Cer20],

absorptive [ACBK24]

� Higher-Order: patterns [BKLV17], top maximal and shallow

generalizations variants [CK20a], equational patterns [CK19],

modulo [CK20a]

ü See david Cerna and Temur Kutsia survey [CK23].

13 / 31

Applications

Applications of anti-unification include:

3 searching a large hypothesis space in inductive logic

programming (ILP) for logic-based machine learning

[CDEM22];

3 preventing bugs and misconfigurations in software [MBK+20];

3 detecting code clones [VY19];

3 searching recursion schemes for efficient parallel compilation

[BBH18].

14 / 31

Syntactic anti-unification

Formal verification - Syntactical case

• terms t ::= x | ⟨⟩ | ⟨t, t⟩ | f t
• Labelled equations E = {si ≜

xi
ti | i ≤ n}

Configurations:

〈 EU︸︷︷︸ ES︸︷︷︸ σ︸︷︷︸
Unsolved Solved Substitution

equations equations

〉

Configuration constraints

• All labels in EU ∪ ES are different,

• no repeated equations appear in ES , and

• no label in EU ∪ ES belongs to dom(σ).

15 / 31

Inference Rules

⟨{f s ≜
x
f t} ∪ E ,S , σ⟩

(Decompose Function)
⟨{s ≜

y
t} ∪ E ,S , {x 7→ f y} ◦ σ⟩

⟨{⟨s, u⟩ ≜
x
⟨t, v⟩} ∪ E ,S , σ⟩

(Decompose Pair)
⟨{s ≜

y
t, u ≜

z
v} ∪ E ,S , {x 7→ ⟨y , z⟩} ◦ σ⟩

⟨{s ≜
x
t} ∪ E ,S , σ⟩

(Solve Repeated) if s ≜
x′

t ∈ S

⟨E ,S , {x 7→ x ′} ◦ σ⟩

⟨{s ≜
x
t} ∪ E ,S , σ⟩

(Solve Non-Repeated) if there is no s ≜
x′

t ∈ S

⟨E , {s ≜
x
t} ∪ S , σ⟩

⟨{s ≜
x
s} ∪ E ,S , σ⟩

(Syntactic) if neither decomposable nor solvable
⟨E ,S , {x 7→ s} ◦ σ⟩ 16 / 31

Inference Rules

Example

⟨{f ⟨f ⟨c , b⟩, c⟩ ≜
x
f ⟨f ⟨d , b⟩, d⟩}, ∅, id⟩

(DecF)
⟨{⟨f ⟨c , b⟩, c⟩ ≜

y
⟨f ⟨d , b⟩, d⟩}, ∅, {x 7→ f y}⟩

(DecP)
⟨{f ⟨c , b⟩ ≜

z1
f ⟨d , b⟩, c ≜

z2
d}, ∅, {x 7→ f ⟨z1, z2⟩}⟩

(DecF)
⟨{⟨c , b⟩ ≜

z3
⟨d , b⟩, c ≜

z2
d}, ∅, {x 7→ f ⟨f z3, z2⟩}⟩

(DecP)
⟨{c ≜

z
d , b ≜

z4
b, c ≜

z2
d}, ∅, {x 7→ f ⟨f ⟨z , z4⟩, z2⟩}⟩

(SolNR)
⟨{b ≜

z4
b, c ≜

z2
d}, {c ≜

z
d}, {x 7→ f ⟨f ⟨z , z4⟩, z2⟩}⟩

(Synt)
⟨{c ≜

z2
d}, {c ≜

z
d}, {x 7→ f ⟨f ⟨z , b⟩, z2⟩}⟩

(SolR)
∅, {c ≜

z
d}, {x 7→ f ⟨f ⟨z , b⟩, z⟩}⟩

17 / 31

PVS Verification

Verification Basics

The type Configuration � and the predicate

validConfiguration? � state the notions expressed in the

Definition of configuration.

Solved and unsolved lists represent solved and unsolved equations of

a configuration (list[AUT]). This allows the deterministic

classification of the derivability type of a configuration based on the

classification of its first unsolved AUT: match DecF?,

match DecP?, match Synt? �, and match Sol? �.

Configurations have type (match DecF conf?) �,

(match DecP conf?) �, (match Synt conf?) �,

(match Sol conf?) � or, when the unsolved part is empty,

(normal configuration?) �.

18 / 31

https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L121-L121
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L182-L185
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L126-L136
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L126-L136
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L126-L136
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L307-L307
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L348-L348
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L395-L396
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L432-L433
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L525-L525

Antiunification Algorithm Specification

The rules (DecF), (DecP) and (Synt) were specified as function

declarations DecF(c) �, DecP(c) �, and Synt(c) �,

respectively. The solve rules (SolR) and (SolNR) were integrated

into a unique rule Solve(c) �

To automatize the proofs of termination, configuration validity, and

preservation of niceness of the Antiunify algorithm, these

properties were encoded in the types of the functions representing

the rules.

E.g., consider the type of the function DecF(c) �.

• Its input type is defined as (match DecF conf?).

• Its output type denotes those valid configurations cp, with the

required properties to automatize proofs.

19 / 31

https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L330-L341
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L377-L388
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L402-L408
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L440-L447
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L330-L341

Antiunification Algorith Specification

The Antiunify � algorithm is defined in PVS as a recursive

function of type [(validConfiguration?) ->

(validConfiguration?)].

By restricting the types for the functions specifying the inference

rules (DecF), (DecP), (Solve), and (Synt), PVS automatically

proves Antiunify’s termination and that every output of the

Antiunify algorithm fulfills the validConfiguration? predicate.

20 / 31

https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L454-L471

Anti-unification Algorithm Verification

Three auxiliary lemmas about invariants and configuration

preservation are highlighted.

1. antiunify sub preserves terms � states that if a t∈
range(c’subs) and vars(t)∩labels(c’unsolved) = ∅ then

(Antiunify(c)’subs)(t) = (c’subs)(t).

Applied twice to (2) and once to (SolveR).

2. antiunify dom sub preserves vars unsolved � states

that domain(Antiunify(c)’subs)∩ vars(c’unsolved) = ∅.
Applied once to (Synt).

3. antiunify solved labels preserve vars unsolved �

states that labels(Antiunify(c)’solved) ∩
vars(c’unsolved) = ∅. Applied twice to (Synt).

No preservation lemma was required by (DecF) and (DecP), and

(SolveNR) depends on simple preservation lemmas. 21 / 31

https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L566-L569
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L572-L573
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L583-L584

Anti-unification Verification

The proof of the soundness theorem, antiunif is sound �

follows by induction on the size of configurations and case analysis.

Surprising the resulting higher complexity of the formal analysis of

the “simpler” analytical cases of the rules (Syntactic) and (SolveR).

22 / 31

https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L599-L605

Quantitative Data

Table 1: Formalization in numbers

PVS theory Formulas TCCs
Inference Proof size Dependencies

Rule (# lines) (# lines)

Terms 119 37
- - -

Substitution 115 18

Anti-unification

(DecF) 64 -

(DecP) 140 -

116 41 (Synt) 269 1624

(SolveR) 245 663

(SolveNR) 63 111

23 / 31

Anti-unification modulo types

Theory Anti-unification type References

Syntactic 1 [Plo70, Rey70]

A ω [AEEM14]

C ω [AEEM14]

† (U)1 ω [CK20c]

(U)≥2 0 [CK20c]

‡ a ∞ [ACBK24]

a(C) ∞ [ACBK24]

(†)Unital: {f (ιf , x) = x , f (x , ιf) = x}

(‡)Absorptive: {f (εf , x) = εf , f (x , εf) = εf }
24 / 31

Conclusions and Future Work

Conclusions and Future Work

Conclusions

3 Although anti-unification has become of increasing interest,

formal certification of anti-unification algorithms has not been

explored except for the simplest syntactic case [ARdLK+25].

� The development of procedures to solve anti-unification

modulo theories is crucial.

3 Only recently, anti-unification modulo a-, C-, and (aC)-symbols

have been addressed. Procedures combining such properties

have been shown to be challenging from theoretical and

practical perspectives [ACBK24].

25 / 31

Thank you for your attention!

Vielen Dank für Ihre Aufmerksamkeit!

26 / 31

References i

Mauricio Ayala-Rincón, David M. Cerna, Andrés

Felipe Gonzélez Barragán, and Temur Kutsia, Equational

Anti-unification over Absorption Theories, IJCAR, 2024.

Maŕıa Alpuente, Santiago Escobar, Javier Espert, and José

Meseguer, A modular order-sorted equational generalization

algorithm, Information and Computation 235 (2014), 98–136.

Mauricio Ayala-Rincón, Thaynara Arielly de Lima, Temur

Kutsia, Mariano Moscato, and Maria Julia Dias, Verification of

an Anti-Unification Algorithm in PVS, 17th Int. Symposium

NASA Formal Methods NFM, Lecture Notes in Computer

Science, vol. In press, Springer, 2025.

27 / 31

References ii

Franz Baader, Unification, weak unification, upper bound, lower

bound, and generalization problems, RTA, 1991.

Adam D. Barwell, Christopher Brown, and Kevin Hammond,

Finding parallel functional pearls: Automatic parallel recursion

scheme detection in haskell functions via anti-unification,

Future Gener. Comput. Syst. 79 (2018), 669–686.

Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu

Villaret, Higher-order pattern anti-unification in linear time, J.

Autom. Reason. 58 (2017), no. 2, 293–310.

Andrew Cropper, Sebastijan Dumancic, Richard Evans, and

Stephen H. Muggleton, Inductive logic programming at 30,

Mach. Learn. 111 (2022), no. 1, 147–172.

28 / 31

References iii

David M. Cerna, Anti-unification and the theory of semirings,

Theo. Com. Sci. 848 (2020), 133–139.

David M. Cerna and Temur Kutsia, A generic framework for

higher-order generalizations, FSCD, 2019.

, Higher-order pattern generalization modulo equational

theories, Math. Struct. Comput. Sci. 30 (2020), no. 6, 627–663.

, Idempotent anti-unification, ACM Trans. Comput. Log.

21 (2020), no. 2, 10:1–10:32.

, Unital anti-unification: type algorithms, 2020.

, Anti-unification and generalization: A survey, IJCAI,

2023.

29 / 31

References iv

Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, Chetan Bansal,

Chandra Maddila, B. Ashok, Sumit Asthana, Christian Bird,

and Aditya Kumar, Rex: Preventing bugs and misconfiguration

in large services using correlated change analysis, 17th USENIX

Symposium on Networked Systems Design and Implementation

(NSDI), 2020, pp. 435–448.

Gordon D. Plotkin, A note on inductive generalization, Machine

Intelligence 5 (1970), 153–163.

John C. Reynolds, Transformational system and the algebric

structure of atomic formulas, Machine Intelligence 5 (1970),

135–151.

30 / 31

References v

Wim Vanhoof and Gonzague Yernaux, Generalization-driven

semantic clone detection in CLP, 29th Int. Symposium on

Logic-Based Program Synthesis and Transformation, LOPSTR,

LNCS, vol. 12042, 2019, pp. 228–242.

31 / 31

	Equational Reasoning
	Unification
	Anti-unification
	Syntactic anti-unification
	PVS Verification
	Conclusions and Future Work

