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Equational Reasoning



Equational Problems

• Equality check: s = t?

• Matching: There exists σ such that sσ = t?

• Unification: There exists σ such that sσ = tσ?

• Anti-unification: There exist r , σ and ρ such that

rσ = s and rρ = t?

s and t, and u are terms in some signature and σ and ρ are

substitutions.
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Unification



Unification modulo

Unification

Goal: find a substitution that identifies two expressions.

s ?
=

sσ≈ tσ

t

σ σ
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Syntactic Unification

• Goal: to identify two expressions.

• Method: replace variables by other expressions.

Example: for x and y variables, a and b constants, and f a function

symbol,

• Identify f (x , a) and f (b, y)

• solution {x/b, y/a}.
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Syntactic Unification

Example:

• Solution σ = {x/b} for f (x , y) = f (b, y) is more general than

solution γ = {x/b, y/b}.

σ is more general than γ:

there exists δ such that σδ = γ;

δ = {y/b}.
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Syntactic Unification

Relevant questions:

• Decidability, Unification Type, Correctness and Completeness.

• When decidable, Complexity.

• With adequate data structures, there are linear solutions

(Martelli-Montanari 1976, Petterson-Wegman 1978).

Syntactic unification is of type unary and linear.
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Our Formalizations on Equational Reasoning
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Anti-unification



Anti-unification

Anti-unification

Goal: find the commonalities between two expressions.
s ≜

r

t

rσ rρ
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Anti-Unification

s

f

f

b

t

f

f

b b

Generalizer

f

u v
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Anti-Unification
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Anti-Unification
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Anti-unification - History

¤ Introduced by Gordon Plotkin [Plo70] and John Reynolds

[Rey70]

� First-order: syntactic [Baa91]; C, A, and AC [AEEM14];

idempotent [CK20b], unital [CK20c], semirings [Cer20],

absorptive [ACBK24]

� Higher-Order: patterns [BKLV17], top maximal and shallow

generalizations variants [CK20a], equational patterns [CK19],

modulo [CK20a]

ü See david Cerna and Temur Kutsia survey [CK23].
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Applications

Applications of anti-unification include:

3 searching a large hypothesis space in inductive logic

programming (ILP) for logic-based machine learning

[CDEM22];

3 preventing bugs and misconfigurations in software [MBK+20];

3 detecting code clones [VY19];

3 searching recursion schemes for efficient parallel compilation

[BBH18].
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Syntactic anti-unification



Formal verification - Syntactical case

• terms t ::= x | ⟨⟩ | ⟨t, t⟩ | f t
• Labelled equations E = {si ≜

xi
ti | i ≤ n}

Configurations:

〈 EU︸︷︷︸ ES︸︷︷︸ σ︸︷︷︸
Unsolved Solved Substitution

equations equations

〉

Configuration constraints

• All labels in EU ∪ ES are different,

• no repeated equations appear in ES , and

• no label in EU ∪ ES belongs to dom(σ).
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Inference Rules

⟨{f s ≜
x
f t} ∪ E ,S , σ⟩

(Decompose Function)
⟨{s ≜

y
t} ∪ E ,S , {x 7→ f y} ◦ σ⟩

⟨{⟨s, u⟩ ≜
x
⟨t, v⟩} ∪ E ,S , σ⟩

(Decompose Pair)
⟨{s ≜

y
t, u ≜

z
v} ∪ E ,S , {x 7→ ⟨y , z⟩} ◦ σ⟩

⟨{s ≜
x
t} ∪ E ,S , σ⟩

(Solve Repeated) if s ≜
x′

t ∈ S

⟨E ,S , {x 7→ x ′} ◦ σ⟩

⟨{s ≜
x
t} ∪ E ,S , σ⟩

(Solve Non-Repeated) if there is no s ≜
x′

t ∈ S

⟨E , {s ≜
x
t} ∪ S , σ⟩

⟨{s ≜
x
s} ∪ E ,S , σ⟩

(Syntactic) if neither decomposable nor solvable
⟨E ,S , {x 7→ s} ◦ σ⟩ 16 / 31



Inference Rules

Example

⟨{f ⟨f ⟨c , b⟩, c⟩ ≜
x
f ⟨f ⟨d , b⟩, d⟩}, ∅, id⟩

(DecF)
⟨{⟨f ⟨c , b⟩, c⟩ ≜

y
⟨f ⟨d , b⟩, d⟩}, ∅, {x 7→ f y}⟩

(DecP)
⟨{f ⟨c , b⟩ ≜

z1
f ⟨d , b⟩, c ≜

z2
d}, ∅, {x 7→ f ⟨z1, z2⟩}⟩

(DecF)
⟨{⟨c , b⟩ ≜

z3
⟨d , b⟩, c ≜

z2
d}, ∅, {x 7→ f ⟨f z3, z2⟩}⟩

(DecP)
⟨{c ≜

z
d , b ≜

z4
b, c ≜

z2
d}, ∅, {x 7→ f ⟨f ⟨z , z4⟩, z2⟩}⟩

(SolNR)
⟨{b ≜

z4
b, c ≜

z2
d}, {c ≜

z
d}, {x 7→ f ⟨f ⟨z , z4⟩, z2⟩}⟩

(Synt)
⟨{c ≜

z2
d}, {c ≜

z
d}, {x 7→ f ⟨f ⟨z , b⟩, z2⟩}⟩

(SolR)
∅, {c ≜

z
d}, {x 7→ f ⟨f ⟨z , b⟩, z⟩}⟩
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PVS Verification



Verification Basics

The type Configuration � and the predicate

validConfiguration? � state the notions expressed in the

Definition of configuration.

Solved and unsolved lists represent solved and unsolved equations of

a configuration (list[AUT]). This allows the deterministic

classification of the derivability type of a configuration based on the

classification of its first unsolved AUT: match DecF?,

match DecP?, match Synt? �, and match Sol? �.

Configurations have type (match DecF conf?) �,

(match DecP conf?) �, (match Synt conf?) �,

(match Sol conf?) � or, when the unsolved part is empty,

(normal configuration?) �.
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https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L432-L433
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L525-L525


Antiunification Algorithm Specification

The rules (DecF), (DecP) and (Synt) were specified as function

declarations DecF(c) �, DecP(c) �, and Synt(c) �,

respectively. The solve rules (SolR) and (SolNR) were integrated

into a unique rule Solve(c) �

To automatize the proofs of termination, configuration validity, and

preservation of niceness of the Antiunify algorithm, these

properties were encoded in the types of the functions representing

the rules.

E.g., consider the type of the function DecF(c) �.

• Its input type is defined as (match DecF conf?).

• Its output type denotes those valid configurations cp, with the

required properties to automatize proofs.
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https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L330-L341
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Antiunification Algorith Specification

The Antiunify � algorithm is defined in PVS as a recursive

function of type [(validConfiguration?) ->

(validConfiguration?)].

By restricting the types for the functions specifying the inference

rules (DecF), (DecP), (Solve), and (Synt), PVS automatically

proves Antiunify’s termination and that every output of the

Antiunify algorithm fulfills the validConfiguration? predicate.
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Anti-unification Algorithm Verification

Three auxiliary lemmas about invariants and configuration

preservation are highlighted.

1. antiunify sub preserves terms � states that if a t∈
range(c’subs) and vars(t)∩labels(c’unsolved) = ∅ then

(Antiunify(c)’subs)(t) = (c’subs)(t).

Applied twice to (2) and once to (SolveR).

2. antiunify dom sub preserves vars unsolved � states

that domain(Antiunify(c)’subs)∩ vars(c’unsolved) = ∅.
Applied once to (Synt).

3. antiunify solved labels preserve vars unsolved �

states that labels(Antiunify(c)’solved) ∩
vars(c’unsolved) = ∅. Applied twice to (Synt).

No preservation lemma was required by (DecF) and (DecP), and

(SolveNR) depends on simple preservation lemmas. 21 / 31

https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L566-L569
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L572-L573
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L583-L584


Anti-unification Verification

The proof of the soundness theorem, antiunif is sound �

follows by induction on the size of configurations and case analysis.

Surprising the resulting higher complexity of the formal analysis of

the “simpler” analytical cases of the rules (Syntactic) and (SolveR).
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Quantitative Data

Table 1: Formalization in numbers

PVS theory Formulas TCCs
Inference Proof size Dependencies

Rule (# lines) (# lines )

Terms 119 37
- - -

Substitution 115 18

Anti-unification

(DecF) 64 -

(DecP) 140 -

116 41 (Synt) 269 1624

(SolveR) 245 663

(SolveNR) 63 111
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Anti-unification modulo types

Theory Anti-unification type References

Syntactic 1 [Plo70, Rey70]

A ω [AEEM14]

C ω [AEEM14]

† (U)1 ω [CK20c]

(U)≥2 0 [CK20c]

‡ a ∞ [ACBK24]

a(C) ∞ [ACBK24]

(†)Unital: {f (ιf , x) = x , f (x , ιf ) = x}

(‡)Absorptive: {f (εf , x) = εf , f (x , εf ) = εf }
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Conclusions and Future Work



Conclusions and Future Work

Conclusions

3 Although anti-unification has become of increasing interest,

formal certification of anti-unification algorithms has not been

explored except for the simplest syntactic case [ARdLK+25].

� The development of procedures to solve anti-unification

modulo theories is crucial.

3 Only recently, anti-unification modulo a-, C-, and (aC)-symbols

have been addressed. Procedures combining such properties

have been shown to be challenging from theoretical and

practical perspectives [ACBK24].
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Thank you for your attention!

Vielen Dank für Ihre Aufmerksamkeit!
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