Mechanising Combinatorial Applications of Compactness

Mauricio Ayala-Rincón

Universidade de Brasília - Brasília D.F., Brazil

Joint work with Fabián F. Serrano Suárez and Thaynara Arielly de Lima

Funded by FAPDF 00193-00000229/2021-21 and CNPq Research Grant 313290/2021-0, and FAPEG grant 202310267000223

RISC/JKU Linz, Hagenberg, 14th October 2024

Talk's Plan

Contextualisation

- 2 Application Hall's Theorem
- **③** Formalisation approach
- 4 Actual Formalisation (Isabelle/HOL)
- [König-Egerváry Theorem]
- 6 Conclusion and work in progress

Contextualisation

Compactness Theorem[Gödel (Satz X) 1930] A set of first-order sentences has a model if and only if every finite subset of it has a model.

♥ Typical textbook proofs infer the compactness theorem from Gödel's completeness theorem!

Paseau and Leek (pag. 10 in The Compactness Theorem): "proofs of compactness via completeness are not satisfactory because they are based on properties incidental to the semantic property of interest. Such proofs conclude compactness, a semantic property, from a property of the logic relating its syntax to its semantics."

"From the perspective of a model theorist who sees talk of syntax as a heuristic for the study of certain relations between structures that happen to have syntactic correlates, proving compactness via completeness is tantamount to heresy (page 53 in Poizat's textbook A Course in Model Theory)."

CONTEXTUALISATION

Contextualisation

Related Work

Hall's Theorem - finite case

- Proved by Philip Hall in 1935: a condition that guarantees the existence of a System of Distinct Representatives (SDR) for a finite collection of finite sets:
 - Given a finite collection of finite sets $\{S_i\}_{i \in I}$.
 - An SDR is a sequence of <u>distinct</u> elements $(x_i)_{i \in I}$, such $x_i \in S_i$.

Theorem (Hall's Theorem — finite case)

Consider a finite collection $\{S_1, S_2, ..., S_n\}$ of finite subsets of an arbitrary set S. The collection $\{S_1, S_2, ..., S_n\}$ has an SDR

if and only if

for every $1 \le k \le n$ and an arbitrary set of k distinct indices (M) $1 \le i_1, \ldots, i_k \le n$, one has that $|S_{i_1} \cup \ldots \cup S_{i_k}| \ge k$.

(M) is the so-called *marriage condition*.

Hall's Theorem - finite case: Formalisation in Isabelle/HOL

Siang and Nipkow (Certified Programs and Proofs 2011) 🗗 formalised the finite case of Hall's theorem in Isabelle/HOL.

 \Rightarrow Mechanisations of the proofs by

🔦 Halmos and Vaughan's (Am. J. Math 1950) 🕭 and

🔦 Rado (Lond. Math. Soc. 1967) 🗐.

Hall's Theorem - countable (infinite) case

Theorem (Hall's Theorem — countable case)

Let $\{S_i\}_{i \in I}$ be a collection of finite subsets of an arbitrary set *S*, where *I* is a countable set of indices.

The collection $\{S_i\}_{i \in I}$ has an SDR

if and only if

For every finite subset of indices $J \subseteq I$, $|\bigcup_{j \in J} S_j| \ge |J|$. (M*)

Serrano, de Lima and Ayala-Rincón formalised this result (Congress on Intelligent Computer Mathematics 2022)

⇒ The mechanisation applies the formalisation of the Compactness Theorem for propositional logic in Serrano's PhD thesis (2011) \blacksquare and verifies the marriage condition for finite families using Jiang and Nipkow's formalisation.

Hall Theorem - Formalisation Approach

Consider the propositional language with constant symbols given by the set below

$$\mathcal{P} = \{C_{i,x} \mid i \in I, x \in S_i\}$$

 $C_{i,x}$ is interpreted as "select the element x from the set S_i ." The sets of propositional formulas describe the existence of an SDR for $\{S_i\}_{i \in I}$:

• "Select at least an element from each S_i :"

$$\mathcal{F} = \{ \forall_{x \in S_i} C_{i,x} \mid i \in I \}.$$

Select at most an element from each S_i:"

$$\mathcal{G} = \{ \neg (C_{i,x} \land C_{i,y}) \mid x, y \in S_i, x \neq y, i \in I \}.$$

• "Do not select more than once the same element from $\bigcup_{i \in I} S_i$."

$$\mathcal{H} = \{ \neg (C_{i,x} \land C_{j,x}) \mid x \in S_i \cap S_j, i \neq j, i, j \in I \}.$$

Assuming the marriage condition (M^*) , the Compactness Theorem is used to prove satisfiability of

$$\mathcal{T}=\mathcal{F}\cup\mathcal{G}\cup\mathcal{H}$$

MAURICIO AYALA-RINCÓN

Hall Theorem - Formalisation Approach

Let \mathcal{T}_0 be any finite subset of formulas in \mathcal{T} and let $J = \{i_1, \ldots, i_m\} \subset I$ the finite subset of indices "referred" in \mathcal{T}_0 . \mathcal{T}_0 is contained in the set

$$\mathcal{T}_1 = \mathcal{F}_0 \cup \mathcal{G}_0 \cup \mathcal{H}_0$$
, where

• $\mathcal{F}_0 = \left\{ \bigvee_{x \in S_j} C_{j,x} \mid j \in J \right\},$ • $\mathcal{G}_0 = \left\{ \neg (C_{j,x} \land C_{j,y}) \mid x, y \in S_j, x \neq y, j \in J \right\},$ • $\mathcal{H}_0 = \left\{ \neg (C_{j,x} \land C_{k,x}) \mid x \in S_j \cap S_k, j \neq k, j, k \in J \right\}.$ By hypothesis, $\{S_{i_1}, \ldots, S_{i_m}\}$ satisfies the marriage condition (*M*), and by the finite version of Hall's Theorem there exists a function $f : J \to \bigcup_{i \in J} S_i$ such that the image of f gives an SDR for $\{S_{i_1}, \ldots, S_{i_m}\}$.

Hall Theorem - Formalisation Approach

A model for \mathcal{T}_1 is given by the interpretation $v: \mathcal{P} \to \{V, F\}$ defined by,

$$v(C_{j,x}) = \begin{cases} \mathsf{V}, & \text{if } j \in J \text{ and } f(j) = x, \\ \mathsf{F}, & \text{otherwise.} \end{cases}$$

Thus, \mathcal{T}_1 is satisfiable and so is \mathcal{T}_0 .

Therefore, by the Compactness Theorem, \mathcal{T} is satisfiable.

Definition system-representatives \mathbf{C}^{i} :: $('a \Rightarrow 'b \ set) \Rightarrow 'a \ set \Rightarrow ('a \Rightarrow 'b) \Rightarrow$ bool where system-representatives $S \ I \ R \equiv (\forall i \in I. \ (R \ i) \in (S \ i)) \land (inj \text{-} on \ R \ I)$

Above, $(inj - on R \ I)$ means that the function R is injective on I.

The marriage condition for S and I is formalized by the proposition,

$$\forall J \subseteq I. \ finite \ J \longrightarrow card \ J \leq card \ \left(\bigcup \left(S \ ' \ J \right) \right)$$

where S ' $J = \{S \mid j \in J\}.$

Definition \mathcal{F} \mathbb{C}' :: $('a \Rightarrow 'b \ set) \Rightarrow 'a \ set \Rightarrow (('a \times 'b) formula) \ set$ where $\mathcal{F} \ S \ I \equiv (\bigcup i \in I. \{ disjunction-atomic (set-to-list (S \ i)) \ i \})$

 $\begin{array}{l} \textbf{Definition } \mathcal{G} \ensuremath{\overline{C}}^{\prime} :: ('a \Rightarrow 'b \ set) \Rightarrow 'a \ set \Rightarrow ('a \times 'b) formula \ set \ \textbf{where} \\ \mathcal{G} \ S \ I \equiv \{\neg.(atom \ (i,x) \ \land. \ atom(i,y)) \\ & |x \ y \ i \ . \ x \in (S \ i) \ \land \ y \in (S \ i) \ \land \ x \neq y \ \land \ i \in I\} \end{array}$

Definition $\mathcal{H} \ \overline{\mathcal{C}}' :: ('a \Rightarrow 'b \ set) \Rightarrow 'a \ set \Rightarrow ('a \times 'b) formula \ set \$ where $\mathcal{H} \ S \ I \equiv \{\neg.(atom \ (i,x) \land. atom(j,x)) \ | \ x \ i \ j. \ x \in (S \ i) \cap (S \ j) \land (i \in I \land j \in I \land i \neq j)\}$

Lemma system-distinct-representatives-finite \mathbf{C} :

assumes

 $\forall i \in I. (S i) \neq \{\}$ and $\forall i \in I.$ finite (S i) and $To \subseteq (\mathcal{T} S I)$ and finite To and $\forall J \subseteq (indices-set-formulas To).$ card $J \leq card (\bigcup (S 'J))$ shows $\exists R.$ system-representatives S (indices-set-formulas To) R

Lemma *SDR-satisfiable* \square :

assumes $\forall i \in I$. $(A \ i) \neq \{\}$ and $\forall i \in I$. finite $(A \ i)$ and $X \subseteq (\mathcal{T} \ A \ I)$ and system-representatives $A \ I \ R$ shows satisfiable X

Lemma *finite-is-satisfiable* \square :

assumes

 $\forall i \in I. (S i) \neq \{\}$ and $\forall i \in I.$ finite (S i) and $To \subseteq (\mathcal{T} S I)$ and finite To and $\forall J \subseteq (indices set formulas To). card <math>J \leq card (\bigcup (S , J))$ shows satisfiable To

MAURICIO AYALA-RINCÓN

Lemma all-formulas-satisfiable $\[equiv}]$: fixes $S :: 'a \Rightarrow 'b \ set$ and $I :: 'a \ set$ assumes $\exists g.$ enumeration $(g:: nat \Rightarrow 'a)$ and $\exists h.$ enumeration $(h:: nat \Rightarrow 'b)$ and $\forall i \in I.$ finite $(S \ i)$ and $\forall J \subseteq I.$ finite $J \longrightarrow card \ J \leq card \ (\bigcup \ (S \ J))$ shows satisfiable $(\mathcal{T} \ S \ I)$

Lemma *function-SDR* ^C:

assumes $i \in I$ and M model ($\mathcal{F} S I$) and M model ($\mathcal{G} S I$) and finite(S i) shows $\exists !x$. (value M (atom (i,x)) = Ttrue) $\land x \in (S i) \land SDR M S I i = x$

Theorem Hall C:

fixes $S :: 'a \Rightarrow 'b \text{ set and } I :: 'a \text{ set}$ assumes $\exists g.$ enumeration $(g:: nat \Rightarrow 'a)$ and $\exists h.$ enumeration $(h:: nat \Rightarrow 'b)$ and Finite: $\forall i \in I$. finite (S i)and Marriage: $\forall J \subseteq I$. finite $J \longrightarrow card \ J \leq card \ (\bigcup (S `J))$ shows $\exists R$. system-representatives $S \ I \ R$ proof[KÖNIG-EGERVÁRY THEOREM]

König-Egerváry theorem

Formalisations deriving from Hall Theorem:

• König-Egerváry theorem

"In any bipartite graph, the number of edges in a maximum matching equals the number of vertices in a minimum vertex cover."

A matching that covers all left-vertices gives an SDR for the infinite collection of sets given by right-vertices incident to each left-vertex.

Taken from Wikipedia, by David Eppstein

Hall's Theorem: Graph-Theoretical version - König-Egerváry theorem

Example Let $\{T_c\}_{c \in C}$ be the collection of sets of tree species inhabiting each country, from the estimated 73.000 tree species in the world.

Select a different national tree for each country in the world: $(t_c)_{c \in C}$

The number of tree species on Earth PNAS 119(6), 2022

[KÖNIG-EGERVÁRY THEOREM]

König-Egerváry Theorem

The number of tree species on Earth PNAS 119(6), 2022 https://doi.org/10.1016/S1385-7258(51)50053-7

König-Egerváry Theorem

Perfect match on the bipartite graph $G = \langle C, \bigcup_{c \in C} T_c, E \rangle$ covering C

König-Egerváry Theorem countable (infinite) version

Theorem (Hall's Theorem - graph-theoretical countable version)

Let $G = \langle X, Y, E \rangle$ be a countable bipartite graph, where for all $x \in X$, N(x) is finite.

A perfect matching covering X exists

if and only if

for all J finite, $J \subseteq X$, $|J| \le |N(J)|$. (M_G)

Formalisation Approach: From sets to graphs

SDR associated to a directed bipartite digraph

Let $G = \langle X, Y, E \rangle$ be a directed bipartite digraph. The collection of sets associated with G is built as

 $\{V_i\}_{i\in X}$,

where for all $i \in X$.

$$V_i = \{y \mid (i, y) \in E\}$$

Therefore, if $E' \subseteq E$ is a perfect matching covering X, the function

$$R:X
ightarrowigcup_{i\in X}V_i$$
, defined as $R(i)\mapsto y$ s.t. $(i,y)\in E'$

is an SDR of the set collection $\{V_i\}_{i \in X}$.

Formalisation Approach: From sets to graphs

```
definition bipartite digraph:: "('a,'b) pre digraph \Rightarrow 'a set \Rightarrow 'a set \Rightarrow bool"
    "bipartite digraph G X Y \equiv
          (X \cup Y = (verts G)) \land X \cap Y = \{\} \land
          (\forall e \in (arcs G), (tail G e) \in X \leftrightarrow (head G e) \in Y)"
 (* Matchings in directed bipartite digraphs *)
 definition dirBD matching:: "('a,'b) pre digraph \Rightarrow 'a set \Rightarrow 'a set \Rightarrow 'b set \Rightarrow bool"
   where
   "dirBD matching G X Y E \equiv
              dir bipartite digraph G X Y \land (E \subseteq (arcs G)) \land
               (\forall e1 \in E. (\forall e2 \in E. e1 \neq e2 \longrightarrow
               ((head G e1) \neq (head G e2)) \land
               ((tail G e1) \neq (tail G e2)))"
(* Perfect matching (covering tail vertexes) in directed bipartite digraphs *)
definition dirBD perfect matching::
  "('a, 'b) pre digraph \Rightarrow 'a set \Rightarrow 'a set \Rightarrow 'b set \Rightarrow bool"
  where
  "dirBD perfect matching G X Y E \equiv
   dirBD matching G X Y E \wedge (tails set G E = X)"
```

[KÖNIG-EGERVÁRY THEOREM]

Formalisation Approach: From sets to graphs

```
definition E_head :: "('a,'b) pre_digraph ⇒ 'b set ⇒ ('a ⇒ 'a)"
where
"E_head G E = (λx. (THE y. ∃ e. e ∈ E ∧ tail G e = x ∧ head G e = y))"
definition dirBD_to_Hall::
    "('a,'b) pre_digraph ⇒ 'a set ⇒ 'a set ⇒ 'a set ⇒ ('a ⇒ 'a set) ⇒ bool
where
    "dirBD_to_Hall G X Y I S ≡
    dir_bipartite_digraph G X Y ∧ I = X ∧ (∀v∈I. (S v) = (neighbourhood G v))"
theorem dir BD to Hall:
    "dirBD_perfect_matching G X Y E →
    system representatives (neighbourhood G) X (E head G E)"
```

Formalisation Approach: From graphs to sets

Perfect matching associated to a collection of sets

Let $\{S_i\}_{i \in I}$ be a collection of subsets of an arbitrary set S. The associated directed bipartite digraph is built as the graph

 $G = \langle I, Y, E \rangle$,

where $Y = \bigcup_{i \in I} S_i$ and $E = \{(i, y) \mid i \in I \text{ and } y \in S_i\}$.

Therefore, if *R* is an SDR of $\{S_i\}_{i \in I}$, the subset of arcs

$$E' = \{(x, y) \mid x \in I \text{ and } y = R(x)\}$$

is a perfect matching covering I.

[KÖNIG-EGERVÁRY THEOREM]

Formalisation Approach: From graphs to sets

```
lemma marriage_necessary_graph:
```

```
assumes "(dirBD_perfect_matching G X Y E)" and "\forall i \in X. finite (neighbourhood G i)" shows "\forall J \subseteq X. finite J \longrightarrow (card J) \leq card (\bigcup (neighbourhood G ` J))"
```

```
lemma marriage_sufficiency_graph:
```

```
fixes G :: "('a::countable, 'b::countable) pre_digraph" and X:: "'a set"
assumes "dir_bipartite_digraph G X Y" and "\forall i \in X. finite (neighbourhood G i)"
shows
"(\forall J \subseteq X. finite J \longrightarrow (card J) \leq card (\bigcup (neighbourhood G ` J))) \longrightarrow
```

```
(∃E. dirBD_perfect_matching G X Y E)"
```

[KÖNIG-EGERVÁRY THEOREM]

Formalisation Approach: From graphs to sets

```
(* Graph version of Hall's Theorem *)
```

```
theorem Hall_digraph:

fixes G :: "('a::countable, 'b::countable) pre_digraph" and X:: "'a set"

assumes "dir_bipartite_digraph G X Y" and "\forall i \in X. finite (neighbourhood G i)"

shows "(\exists E. dirBD_perfect_matching G X Y E) \leftrightarrow

(\forall J \subseteq X. finite J \rightarrow (card J) \leq card ([] (neighbourhood G ` J)))"
```

Additional results and work in Progress

Other formalisations available in the Isabelle distribution and based on the Compactness Theorem:

🏟 De Bruijn-Erdös's graph colouring theorem Ind. Math (1951) 🛢

"The chromatic number of a graph equals n if and only if the chromatic numbers of all its finite subgraphs are $\leq n$."

König's lemma (cf exercise in Chapter I.6 in Nerode and Shore's *Logic for Applications* textbook (2012)

"A finitely branching tree is infinite iff it has an infinite path."

CONCLUSION AND WORK IN PROGRESS

27/29

Conclusions and Work in progress

The main characteristics of our formalisation are:

- Use of standard definitions that simplify further extensions and applications;
- Closeness to pen-and-paper proofs, dissecting all minimal required steps in the <u>assisted</u> proof.
- \Rightarrow Exhibiting all minimal details is relevant to highlight to Math and CS students and professionals the relevance of mechanised proofs.

- A Having a library of combinatorial theory is essential to specify and verify algorithms over graph structures and sets.
- **4** The development is available as an input in the Archive of Formal Proofs:

"Compactness Theorem for Propositional Logic and Combinatorial Applications"

CONCLUSION AND WORK IN PROGRESS

Conclusions and Work in progress

Thank for your attention!