
Mechanisation of Equational Reasoning†

Libraries: https://github.com/nasa/pvslib/nominal and TRS

Mauricio Ayala-Rincón

November 18th, 2025 - Department of Informatics / King’s College London

Departamentos de Matemática & Ciência da Computação

† Research supported by the Royal Society, and the Brazilian agencies CAPES, CNPq,

and FAPDF

https://github.com/nasa/pvslib/tree/master/nominal
https://github.com/nasa/pvslib/tree/master/TRS

Joint Work With

Ana R. Oliveira Maŕıa Júlia D. Lima Maribel Fernández Daniele Nantes

Washington Ribeiro Gabriela Ferreira Thaynara de Lima Mariano Moscato

Gabriel Silva Marcos Mercandeli David Cerna Temur Kutsia

1 / 50

Outline

1. Equational Reasoning - Unification

2. Anti-unification

3. Syntactic anti-unification

4. PVS Verification

5. Linear Anti-unification and Anti-unification modulo

6. Conclusions and Future Work

2 / 50

Equational Reasoning - Unification

Equational Problems

• Equality check: s = t?

• Matching: There exists σ such that sσ = t?

• Unification: There exists σ such that sσ = tσ?

• Anti-unification: There exist r , σ and ρ such that

rσ = s and rρ = t?

s and t, and u are terms in some signature and σ and ρ are

substitutions.

3 / 50

Unification modulo

Unification

Goal: find a substitution that identifies two expressions.

s ?
=

sσ≈ tσ

t

σ σ

4 / 50

Syntactic Unification

• Goal: to identify two expressions.

• Method: replace variables with other expressions.

Example: for x and y variables, a and b constants, and f a function

symbol,

• Identify f (x , a) and f (b, y)

• solution {x/b, y/a}.

5 / 50

Syntactic Unification

• Goal: to identify two expressions.

• Method: replace variables with other expressions.

Example: for x and y variables, a and b constants, and f a function

symbol,

• Identify f (x , a) and f (b, y)

• solution {x/b, y/a}.

5 / 50

Syntactic Unification

Example:

• Solution σ = {x/b} for f (x , y) = f (b, y) is more general than

solution γ = {x/b, y/b}.

σ is more general than γ:

there exists δ such that σδ = γ;

δ = {y/b}.

6 / 50

Syntactic Unification

Interesting questions:

• Decidability, Unification Type, Correctness and Completeness.

• Complexity.

• With adequate data structures, there are linear solutions

(Martelli-Montanari 1976, Petterson-Wegman 1978).

Syntactic unification is of type unary and linear.

7 / 50

https://doi.org/10.1145/357162.357169
https://core.ac.uk/download/pdf/82457046.pdf

Unification Modulo

When operators possess equational properties, the problem becomes

more complex.

Example: for f commutative (C), f (x , y) ≈ f (y , x):

• f (x , y) = f (a, b)?

• Solutions: {x/a, y/b} and {x/b, y/a}.

The unification problem is of type finitary.

8 / 50

Unification Modulo

When operators possess equational properties, the problem becomes

more complex.

Example: for f commutative (C), f (x , y) ≈ f (y , x):

• f (x , y) = f (a, b)?

• Solutions: {x/a, y/b} and {x/b, y/a}.

The unification problem is of type finitary.

8 / 50

Unification Modulo

Example: for f associative (A), f (f (x , y), z) ≈ f (x , f (y , z)):

• f (x , a) = f (a, x)?

• Solutions: {x/a}, {x/f (a, a)}, {x/f (a, f (a, a))}, . . .

The unification problem is of type infinitary.

9 / 50

Unification Modulo

Example: for f associative (A), f (f (x , y), z) ≈ f (x , f (y , z)):

• f (x , a) = f (a, x)?

• Solutions: {x/a}, {x/f (a, a)}, {x/f (a, f (a, a))}, . . .

The unification problem is of type infinitary.

9 / 50

Unification Modulo

Example: for f AC with unity (U), f (x , e) ≈ x :

• f (x , y) = f (a, b)?

• Solutions: {x/e, y/f (a, b)}, {x/f (a, b), y/e}, {x/a, y/b}, and
{x/b, y/a}.

The unification problem is of type finitary.

10 / 50

Unification Modulo

Example: for f AC with unity (U), f (x , e) ≈ x :

• f (x , y) = f (a, b)?

• Solutions: {x/e, y/f (a, b)}, {x/f (a, b), y/e}, {x/a, y/b}, and
{x/b, y/a}.

The unification problem is of type finitary.

10 / 50

Unification Modulo

Example: for f A, and idempotent (I), f (x , x) ≈ x :

• f (x , f (y , x)) = f (f (x , z), x))?

• Solutions: {y/f (u, f (x , u)), z/u}, . . .

The unification problem is of type zero (Schmidt-Schauß 1986,

Baader 1986).

11 / 50

https://doi.org/10.1007/BF02328450
https://doi.org/10.1007/BF02328451

Unification Modulo

Example: for f A, and idempotent (I), f (x , x) ≈ x :

• f (x , f (y , x)) = f (f (x , z), x))?

• Solutions: {y/f (u, f (x , u)), z/u}, . . .

The unification problem is of type zero (Schmidt-Schauß 1986,

Baader 1986).

11 / 50

https://doi.org/10.1007/BF02328450
https://doi.org/10.1007/BF02328451

Unification Modulo

Example: for + AC, and h homomorphism (h),

h(x + y) ≈ h(x) + h(y):

• h(y) + a = y + z?

• Solutions: {y/a, z/h(a)}, {y/h(a) + a, z/h2(a)}, . . . ,
{y/hk(a) + . . .+ h(a) + a, z/hk+1(a)}, . . .

The unification problem is of type zero and undecidable (Narendran

1996). The same happens for ACUh (Nutt 1990, Baader 1993).

12 / 50

https://doi.org/10.1109/LICS.1996.561463
https://doi.org/10.1109/LICS.1996.561463
https://doi.org/10.1007/3-540-52885-7_118
https://doi.org/10.1145/174130.174133

Unification Modulo

Example: for + AC, and h homomorphism (h),

h(x + y) ≈ h(x) + h(y):

• h(y) + a = y + z?

• Solutions: {y/a, z/h(a)}, {y/h(a) + a, z/h2(a)}, . . . ,
{y/hk(a) + . . .+ h(a) + a, z/hk+1(a)}, . . .

The unification problem is of type zero and undecidable (Narendran

1996). The same happens for ACUh (Nutt 1990, Baader 1993).

12 / 50

https://doi.org/10.1109/LICS.1996.561463
https://doi.org/10.1109/LICS.1996.561463
https://doi.org/10.1007/3-540-52885-7_118
https://doi.org/10.1145/174130.174133

Synthesis Unification modulo i

Synthesis Unification modulo

Theory
Unif.
type

Equality-
checking

Matching Unification
Related
work

Syntactic 1 O(n) O(n) O(n)

R65

MM76

PW78

C ω O(n2) NP-comp. NP-comp.
BKN87

KN87

A ∞ O(n) NP-comp. NP-hard
M77

BKN87

AU ∞ O(n) NP-comp. decidable
M77

KN87

AI 0 O(n) NP-comp. NP-comp.

Kĺıma02

SS86

Baader86

13 / 50

https://dl.acm.org/doi/10.1145/321250.321253
https://doi.org/10.1145/357162.357169
https://core.ac.uk/download/pdf/82457046.pdf
https://doi.org/10.1016/S0747-7171(87)80027-5
https://doi.org/10.1145/36330.36332
 https://doi.org/10.2307/2273922
https://doi.org/10.1016/S0747-7171(87)80027-5
https://doi.org/10.2307/2273922
https://doi.org/10.1145/36330.36332
https://doi.org/10.1007/3-540-45687-2_35
https://doi.org/10.1007/BF02328450
https://doi.org/10.1007/BF02328451

Synthesis Unification modulo

Synthesis Unification modulo

Theory
Unif.
type

Equality-
checking

Matching Unification
Related
work

AC ω O(n3) NP-comp. NP-comp.

BKN87

KN87

KN92

ACU ω O(n3) NP-comp. NP-comp. KN92

AC(U)I ω - - NP-comp.
KN92

BMMO20

D ω - NP-hard NP-hard TA87

ACh 0 - - undecidable

B93

N96

EL18

ACUh 0 - - undecidable
B93

N96

14 / 50

https://doi.org/10.1016/S0747-7171(87)80027-5
https://doi.org/10.1145/36330.36332
https://doi.org/10.1007/BF00245463
https://doi.org/10.1007/BF00245463
https://doi.org/10.1007/BF00245463
https://doi.org/10.1017/S0960129519000185
https://doi.org/10.1016/S0747-7171(87)80026-3
https://doi.org/10.1145/174130.174133
https://doi.org/10.1109/LICS.1996.561463
https://arxiv.org/abs/1811.05602
https://doi.org/10.1145/174130.174133
https://doi.org/10.1109/LICS.1996.561463

Results

Synthesis Unification Nominal Modulo

Theory
Unif.
type

Equality-
checking

Matching Unification
Related
work

≈α 1 O(n log n) O(n log n) O(n2)

UPG04 LV10

CF08 CF10

LSFA2015

C ∞ O(n2 log n) NP-comp. NP-comp.

LOPSTR2017

FroCoS2017

TCS2019

LOPSTR2019

MSCS2021

A ∞ O(n log n) NP-comp. NP-hard
LSFA2016

TCS2019

AC ω O(n3 log n) NP-comp. NP-comp.

LSFA2016

TCS2019

CICM2023

JAR2024

15 / 50

https://doi.org/10.1016/j.tcs.2004.06.016
https://doi.org/10.4230/LIPIcs.RTA.2010.209
https://doi.org/10.1007/978-3-540-69937-8_11
https://doi.org/10.1007/978-3-642-20551-4_15
https://doi.org/10.1016/j.entcs.2016.06.005
https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1016/j.tcs.2019.02.020
https://doi.org/10.1007/978-3-030-45260-5_8
https://doi.org/10.1017/S0960129521000050
https://doi.org/10.1016/j.entcs.2017.04.003
https://doi.org/10.1016/j.tcs.2019.02.020
https://doi.org/10.1016/j.entcs.2017.04.003
https://doi.org/10.1016/j.tcs.2019.02.020
https://link.springer.com/chapter/10.1007/978-3-031-42753-4_4
https://doi.org/10.1007/s10817-024-09714-5

Synthesis on Nominal Equational Modulo

Anti-unification First-order syntax Nominal logic, Nominal Reasoning, · · ·

Stickel
AC-Unif.

IJCAR 1975
J.ACM 1981

Fages
AC-unif.

CADE 1984
JSC 1987

Pitts& Gabbay
Nominal Logic

Inf.&C.
2003

Urban et al.
Form. Nominal

Unif.
Isabelle/HOL
TCS 2004

Contejean
Form.

AC-Match.
Coq

RTA 2004

Calvès&Fernández
Nom. Unif.

Poly
WoLLIC 2008

Alpuente et al.
Anti-Unif.
Inf.&C.
2014

Cerna&Kutsia
Unital

Anti-Unif.
FSCD 2020

Levy&Villaret
Nom. Unif.

O(n2)
RTA 2010

Silva et al.
Form.

AC-Unif.
PVS

FSCD 2022

González et al.
Anti-Unif.
modulo

Absorption
IJCAR 2024

Reynolds
Machine
Intell.
1970

Plotkin
Machine
Intell.
1970

Oliveira et al.
Form.

Nom.-Unif.
PVS

LSFA 2016

Carvalho et al.
Form.

Nom. C-Unif.
Coq

FroCoS 2017
TCS 2019

Carvalho et al.
Form.

Nom. C-Match.
Coq

LoPSTR 2017

Silva et al.
Form.

Nom. C-Unif.
PVS

LoPSTR 2019
MSCS 2021

Cerna, Kutsia
Anti-Unif
Survey

IJCAI 2023

Silva et al.
Form.

Nom. AC-Match.
PVS

⋆ CICM 2023

Silva et al.
Form.

AC-Unif.
PVS

JAR 2024

Ayala-Rincón et al.
Form.

Anti-Unif.
PVS

NASA-FM 2025

Timeline on the formalisation of equational reasoning

1970 1975 1985 2000 2005 2010 2015 2020 20220 2024 2025

16 / 50

Anti-unification

Joint Work With

Maria Júlia Dias Lima

CC / U. Braśılia

Marcos Mercandeli

Math / U. Braśılia

17th NASA Formal Methods Symposium
(NFM 2025)

Williamsburg, VA, USA, 11-13 June 2025

Honorable Mention
awarded to the paper

 M. Ayala-Rincón, T. Arielly de Lima, M. Dias Lima, M. Moscato
and T. Kutsia

Verification of an Anti-Unification Algorithm in PVS

Aaron Dutle
NFM 2025- Program Co-Chair

Laura Titolo
NFM 2025- General Chair

Laura Humphrey
NFM 2025- Program Co-Chair

NASA Formal Methods 2025

Thaynara Arielly de Lima

U. F. Goiâs

Mariano Miguel Moscato

AMA - NASA LaRC

Temur Kutsia

RISC/JKU Linz 17 / 50

Anti-unification - History

¤ Introduced by Gordon Plotkin [Plo70] and John Reynolds

[Rey70]

� First-order: syntactic [Baa91]; C, A, and AC [AEEM14];

idempotent [CK20b], unital [CK20c], semirings [Cer20],

absorptive [ACBK24]

� Higher-Order: patterns [BKLV17], top maximal and shallow

generalisations variants [CK20a], equational patterns [CK19],

modulo [CK20a]

ü See david Cerna and Temur Kutsia survey [CK23].

18 / 50

Applications

Applications of anti-unification include:

3 searching a large hypothesis space in inductive logic

programming (ILP) for logic-based machine learning

[CDEM22];

3 preventing bugs and misconfigurations in software [MBK+20];

3 detecting code clones [VY19];

3 searching recursion schemes for efficient parallel compilation

[BBH18].

19 / 50

Anti-unification

Anti-unification

Goal: find the commonalities between two expressions.

s ≜

r

t

ρleft ρright

20 / 50

Anti-Unification

s

f

f

b

t

f

f

b b

Generalizer

f

u v

21 / 50

Anti-Unification

s

f

f

b

t

f

f

b b

A less general
generalizer

f

f v

u b

22 / 50

Anti-Unification

s

f

f

b

t

f

f

b

Least general
generalizer (lgg)

f

f u

u b

23 / 50

Syntactic anti-unification

Formal verification - Syntactical case

• terms: t ::= x | ⟨⟩ | ⟨t, t⟩ | f t
• Labelled equations (AUTs): E = {si ≜

xi
ti | i ≤ n}

Configurations:

〈 EU︸︷︷︸ ES︸︷︷︸ σ︸︷︷︸
Unsolved Solved Substitution

equations equations

〉

Configuration constraints

• All labels in EU ∪ ES are different,

• no repeated equations appear in ES , and

• no label in EU ∪ ES belongs to Domain(σ).

Solved equations have left- and right-hand sides not headed by the same

symbols.
24 / 50

Inference Rules

⟨{f s ≜
x
f t} ∪ E ,S , σ⟩

(Decompose Function)
⟨{s ≜

y
t} ∪ E ,S , {x 7→ f y} ◦ σ⟩

⟨{⟨s, u⟩ ≜
x
⟨t, v⟩} ∪ E ,S , σ⟩

(Decompose Pair)
⟨{s ≜

y
t, u ≜

z
v} ∪ E ,S , {x 7→ ⟨y , z⟩} ◦ σ⟩

⟨{s ≜
x
t} ∪ E ,S , σ⟩

(Solve Repeated) if s ≜
x
t solved and ∃x ′ with s ≜

x′
t ∈ S

⟨E ,S , {x 7→ x ′} ◦ σ⟩

⟨{s ≜
x
t} ∪ E ,S , σ⟩

(Solve Non-Repeated) if if s ≜
x
t solved and there is no s ≜

x′
t ∈ S

⟨E , {s ≜
x
t} ∪ S , σ⟩

⟨{s ≜
x
s} ∪ E ,S , σ⟩

(Syntactic) if s ≜
x
s neither decomposable nor solvable

⟨E ,S , {x 7→ s} ◦ σ⟩
25 / 50

Inference Rules

Example

⟨{f ⟨f ⟨c , b⟩, c⟩ ≜
x
f ⟨f ⟨d , b⟩, d⟩}, ∅, id⟩

(DecF)
⟨{⟨f ⟨c , b⟩, c⟩ ≜

y
⟨f ⟨d , b⟩, d⟩}, ∅, {x 7→ f y}⟩

(DecP)
⟨{f ⟨c , b⟩ ≜

z1
f ⟨d , b⟩, c ≜

z2
d}, ∅, {x 7→ f ⟨z1, z2⟩}⟩

(DecF)
⟨{⟨c , b⟩ ≜

z3
⟨d , b⟩, c ≜

z2
d}, ∅, {x 7→ f ⟨f z3, z2⟩}⟩

(DecP)
⟨{c ≜

z
d , b ≜

z4
b, c ≜

z2
d}, ∅, {x 7→ f ⟨f ⟨z , z4⟩, z2⟩}⟩

(SolNR)
⟨{b ≜

z4
b, c ≜

z2
d}, {c ≜

z
d}, {x 7→ f ⟨f ⟨z , z4⟩, z2⟩}⟩

(Synt)
⟨{c ≜

z2
d}, {c ≜

z
d}, {x 7→ f ⟨f ⟨z , b⟩, z2⟩}⟩

(SolR)
⟨∅, {c ≜

z
d}, {x 7→ f ⟨f ⟨z , b⟩, z⟩}⟩

∗ Generalizer: r = f ⟨f ⟨z , b⟩, z⟩, ρleft = {z 7→ c}, and ρright = {z 7→ d}.

26 / 50

PVS Verification

Verification Basics

The type Configuration is represented as

[unsolved , solved : list[AUT], substitution : nice?] and the predicate

validConfiguration? states the constraints expressed in the

Definition of configuration.

Let ⟨Eu,Es, σ⟩ be a Configuration. It has type validConfiguration?

if for eqs = Eu ∪ Es:

disjoint?(Vars(eqs), labels(eqs)) ∧
card(labels(eqs)) = length(eqs) ∧
disjoint?(Domain(σ), labels(eqs) ∪ Vars(eqs)) ∧
Solved?(Es) ∧
NotRepeated?(Es)

27 / 50

https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L121-L121
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L182-L185

Verification Basics

unsolved and solved lists of AUTs (list[AUT]) represent solved and

unsolved equations of a configuration.

Configurations are deterministically classified according to their

derivability type based on the type of their head unsolved AUT :

match DecF?, match DecP?, match Synt?, and match Sol?.

Let s ≜
x
t be the head of Eu in a configuration ⟨Eu,Es, σ⟩.

⟨Eu,Es, σ⟩ has type match DecF conf ? if s ≜
x
t has type

match DecF?, specified as:

app?(s) ∧ app?(t) ∧ fun Symbol(s) = fun Symbol(t)

28 / 50

Verification Basics

Then, configurations have the type:

• match DecF conf ?,

• match DecP conf ?,

• match Synt conf ?,

• match Sol conf ?

or, when the unsolved part is empty,

• normal configuration?.

29 / 50

Antiunification Algorithm Specification

The inference rules (DecF), (DecP), and (Synt) were specified as

function declarations DecF , DecP, and Synt, with parameter

configurations of types match DecF conf ?, match DecP conf ?,

and match Synt conf ?, respectively.

The solve rules (SolR) and (SolNR) were integrated into a unique

rule Solve with parameter configuration of type match Sol conf ?.

To automate the proofs of termination, configuration validity, and

preservation of niceness of the Antiunify algorithm, these properties

were encoded in the types of the functions representing the rules.

30 / 50

Antiunification Algorithm Specification

E.g., consider the type of the function DecF .

Let c = ⟨Eu,Es, σ⟩ and c ′ = ⟨Eu′,Es ′, σ′⟩ be the input and output

configurations, respectively.

• Its input type is a configuration of type match DecF conf ?.

• Its output type is specified by the dependent type predicate:

tail(Eu′) = tail(Eu) ∧
size(Eu′) < size(Eu) ∧
(label(Eu[0]))︸ ︷︷ ︸ σ′ = fun Symbol(Eu[0])︸ ︷︷ ︸ (label(Eu′[0]))︸ ︷︷ ︸

head label head function symbol fresh label

31 / 50

https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L330-L341

Antiunification Algorithm Specification

The Antiunify algorithm is defined as a recursive function of type

validConfiguration? → validConfiguration?. Its measure is the size

of the unsolved part of the initial configuration.

Antiunify recursively checks the type of the head of the unsolved

part to apply the respective inference rule.

By restricting the types of the functions specifying the inference

rules (DecF), (DecP), (Solve), and (Synt), PVS automatically

proves that Antiunify terminates and that every output of the

Antiunify algorithm fulfils the validConfiguration? predicate.

32 / 50

https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L454-L471

Anti-unification Algorithm Verification

Let Antiunify(⟨Eu,Es, σ⟩) = ⟨∅,Es ′, σ′⟩. Three auxiliary lemmas

about invariants and configuration preservation are highlighted.

1. antiunify sub preserves terms states that

if t ∈ Range(σ) and disjoint?(Vars(t), labels(Eu)) then

tσ′ = tσ.

- It is applied twice to (2) and once to (SolveR).

2. antiunify dom sub preserves vars unsolved states that

disjoint?(Domain(σ′),Vars(Eu)).

- It is applied once to (Synt).

3. antiunify solved labels preserve vars unsolved states that

disjoint?(labels(Es ′),Vars(Eu)).

- It is applied twice to (Synt).

No preservation lemma was required by (DecF) and (DecP), and

(SolveNR) depends on simple preservation lemmas. 33 / 50

https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L566-L569
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L572-L573
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L583-L584

Anti-unification Verification

The proof of the soundness theorem, antiunif is sound , stated

below, follows by induction on the size of configurations and case

analysis.

Let c = ⟨Eu,Es, σ⟩ be any input valid configuration, and let

⟨Eu′,Es ′, σ′⟩ be the final configuration computed by Antiunify(c).

Then
generalizer?(Eu, σ′, ρleft(Es

′), ρright(Es
′))

i.e.,

for any AUT s ≜
x
t ∈ Eu :

xσ′ρleft(Es
′) = s, and xσ′ρright(Es

′) = t

Above, ρleft and ρright are substitutions mapping each label in a solved

list of AUTs to the left and right terms of the AUT, respectively.

34 / 50

Quantitative Data

Table 1: Formalisation in numbers

PVS theory Formulas TCCs
Inference Proof size Dependencies

Rule (# lines) (# lines)

Terms 119 37
- - -

Substitution 115 18

Anti-unification

(DecF) 64 -

(DecP) 140 -

116 41 (Synt) 269 1624

(SolveR) 245 663

(SolveNR) 63 111

35 / 50

Linear Anti-unification and

Anti-unification modulo

Linear Anti-unification and Anti-unification modulo

• Variants of anti-unification such as the linear case, give rise to

surprising results. Linear anti-unification is the restriction to

linear solutions.

• Interest in the formalisation of anti-unification for theories with

Commutative, Associative, and Absorptive symbols: C-, A-,

and a-symbols.

• Related a-symbols are a pair of a function and a constant

symbol, (f , εf), satisfying the axioms

{f (εf , x) = εf , f (x , εf) = εf }

36 / 50

Linear Anti-unification

Example
[Communicated by T. Kutsia] Unification type ∞ and unary for the

linear and the unrestricted case, respectively.

Equational axioms:

{f (g(x , x)) = g(x , x)}

Problem:

g(a, a) ≜ g(b, b)

Linear solutions: {g(x , y), f (g(x , y)), f (f (g(x , y))), . . .}.

Unrestricted solution: g(x , x). 37 / 50

Linear Anti-unification

Example
[Communicated by T. Kutsia] Unification type zero and ∞ for the

linear and the unrestricted case, respectively.

Equational axioms:

E = f (f (x , a), a) = f (x , a), f (f (x , b), b) = f (x , b)]

Problem:

f (a, a) ≜ f (b, b)

Linear solutions: f (x , y), f (f (x , y), z), f (f (f (x , y), z), u), It is a

descending chain of less general generalisers.

Unrestricted solutions:

{f (x , x), f (f (x , x), x), f (f (f (x , x), x), x), . . .}.

38 / 50

Linear Anti-unification

Example
[Communicated by T. Kutsia] Unification type zero and unary for

the linear and the unrestricted case, respectively.

Equational axiom:

E = f (f (x , s(x)), s(x)) = f (x , x)]

Problem:

f (a, s(a)) ≜ f (b, s(b))

Linear solutions:

f (x , s(y)), f (f (x , s(y)), s(z)), f (f (f (x , s(y)), s(z)), s(u)), It is

a descending chain of less general generalisers.

Unrestricted solution: {f (x , s(x))}.

39 / 50

Anti-unification in (a)(A)(C)(aA)(aC)-theories

Example

g

εf a

g

f

f

a a

f

a a

f

a f

a a

An a-generalisation and an aA-generalisation will be illustrated.

40 / 50

Anti-unification in (a)(A)(C)(aA)(aC)-theories

By expanding εf in g(εf , a), one obtains:

g

af

f

a a

f

a εf

g

f

f

a a

f

a a

f

a f

a a

Notice that g(f (f (a, a), f (a, x)), y) is an a-generalisation.

41 / 50

Anti-unification in (a)(A)(C)(aA)(aC)-theories

Considering the same terms modulo aA, and by expanding εf in

g(εf , a), one has:

g

f

εf a

a

g

f

a f

a f

a a

f

a f

a a

g(f (x , y), y) is an aA-generalisation but not an a-generalisation.

42 / 50

Anti-unification modulo types

Theory Anti-unification type References

Syntactic 1 [Plo70, Rey70]

A ω [AEEM14]

C ω [AEEM14]

† (U)1 ω [CK20c]

(U)≥2 nullary [CK20c]

‡ a ∞ [ACBK24]

a(C) ∞ [ACBK24]

(†)Unital: {f (ιf , x) = x , f (x , ιf) = x}

(‡)Absorptive: {f (εf , x) = εf , f (x , εf) = εf }
43 / 50

Conclusions and Future Work

Conclusions and Future Work

Conclusions

3 Formal certification of nominal equational reasoning procedures

is a target of the cooperation UnB/KCL.

3 Although anti-unification has become of increasing interest,

formal certification of anti-unification algorithms has not been

explored except for the simplest syntactic case [ARdLK+25].

� The development of procedures to solve anti-unification

modulo theories is crucial.

3 Only recently, anti-unification modulo a-, C-, and (aC)-symbols

have been addressed. Procedures combining such properties are

challenging from theoretical and practical perspectives

[ACBK24].

44 / 50

Thank you for your attention!

Thank you for your attention!

45 / 50

References i

Mauricio Ayala-Rincón, David M. Cerna, Andrés

Felipe González Barragán, and Temur Kutsia, Equational

Anti-unification over Absorption Theories, IJCAR, 2024.

Maŕıa Alpuente, Santiago Escobar, Javier Espert, and José

Meseguer, A modular order-sorted equational generalization

algorithm, Information and Computation 235 (2014), 98–136.

Mauricio Ayala-Rincón, Thaynara Arielly de Lima, Temur

Kutsia, Mariano Moscato, and Maria Julia Dias, Verification of

an Anti-Unification Algorithm in PVS, 17th Int. Symposium

NASA Formal Methods NFM, Lecture Notes in Computer

Science, vol. In press, Springer, 2025.

46 / 50

References ii

Franz Baader, Unification, weak unification, upper bound, lower

bound, and generalization problems, RTA, 1991.

Adam D. Barwell, Christopher Brown, and Kevin Hammond,

Finding parallel functional pearls: Automatic parallel recursion

scheme detection in haskell functions via anti-unification,

Future Gener. Comput. Syst. 79 (2018), 669–686.

Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu

Villaret, Higher-order pattern anti-unification in linear time, J.

Autom. Reason. 58 (2017), no. 2, 293–310.

Andrew Cropper, Sebastijan Dumancic, Richard Evans, and

Stephen H. Muggleton, Inductive logic programming at 30,

Mach. Learn. 111 (2022), no. 1, 147–172.

47 / 50

References iii

David M. Cerna, Anti-unification and the theory of semirings,

Theo. Com. Sci. 848 (2020), 133–139.

David M. Cerna and Temur Kutsia, A generic framework for

higher-order generalizations, FSCD, 2019.

, Higher-order pattern generalization modulo equational

theories, Math. Struct. Comput. Sci. 30 (2020), no. 6, 627–663.

, Idempotent anti-unification, ACM Trans. Comput. Log.

21 (2020), no. 2, 10:1–10:32.

, Unital anti-unification: type algorithms, 2020.

, Anti-unification and generalization: A survey, IJCAI,

2023.

48 / 50

References iv

Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, Chetan Bansal,

Chandra Maddila, B. Ashok, Sumit Asthana, Christian Bird,

and Aditya Kumar, Rex: Preventing bugs and misconfiguration

in large services using correlated change analysis, 17th USENIX

Symposium on Networked Systems Design and Implementation

(NSDI), 2020, pp. 435–448.

Gordon D. Plotkin, A note on inductive generalization, Machine

Intelligence 5 (1970), 153–163.

John C. Reynolds, Transformational system and the algebric

structure of atomic formulas, Machine Intelligence 5 (1970),

135–151.

49 / 50

References v

Wim Vanhoof and Gonzague Yernaux, Generalization-driven

semantic clone detection in CLP, 29th Int. Symposium on

Logic-Based Program Synthesis and Transformation, LOPSTR,

LNCS, vol. 12042, 2019, pp. 228–242.

50 / 50

	Equational Reasoning - Unification
	Anti-unification
	Syntactic anti-unification
	PVS Verification
	Linear Anti-unification and Anti-unification modulo
	Conclusions and Future Work

