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Equational Reasoning - Unification



Equational Problems

e Equality check: s=1t?
e Matching: There exists o such that so = t?
e Unification: There exists o such that so = to?
e Anti-unification: There exist r, o and p such that

ro =sand rp=t?

s and t, and u are terms in some signature and o and p are
substitutions.
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Unification modulo

Unification

Goal: find a substitution that identifies two expressions.

s 2 t

VAN )

sox to
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Syntactic Unification

e Goal: to identify two expressions.

e Method: replace variables with other expressions.

Example: for x and y variables, a and b constants, and f a function
symbol,

e [dentify f(x,a) and f(b,y)
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Syntactic Unification

e Goal: to identify two expressions.

e Method: replace variables with other expressions.

Example: for x and y variables, a and b constants, and f a function
symbol,

e [dentify f(x,a) and f(b,y)
e solution {x/b,y/a}.
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Syntactic Unification

Example:

e Solution o = {x/b} for f(x,y) = f(b,y) is more general than
solution v = {x/b,y/b}.

o is more general than ~:

there exists § such that od = ~;

6 = {y/b}.
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Syntactic Unification

Interesting questions:

e Decidability, Unification Type, Correctness and Completeness.
o Complexity.

e With adequate data structures, there are linear solutions
(Martelli-Montanari 1976, Petterson-Wegman 1978).

Syntactic unification is of type unary and linear.
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Unification Modulo

When operators possess equational properties, the problem becomes
more complex.

Example: for f commutative (C), f(x,y) =~ f(y, x):

o f(x,y)="f(a,b)?

The unification problem is of type finitary.
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Unification Modulo

When operators possess equational properties, the problem becomes
more complex.

Example: for f commutative (C), f(x,y) =~ f(y, x):
o f(x,y) =f(a b)?
e Solutions: {x/a,y/b} and {x/b,y/a}.

The unification problem is of type finitary.
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Unification Modulo

Example: for f associative (A), f(f(x,y),z) = f(x, f(y,z)):

o f(x,a)=f(a,x)?

The unification problem is of type infinitary.
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Unification Modulo

Example: for f associative (A), f(f(x,y),z) = f(x, f(y,z)):
o f(x,a)=f(a,x)?
e Solutions: {x/a}, {x/f(a,a)}, {x/f(a,f(a,a))},...

The unification problem is of type infinitary.
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Unification Modulo

Example: for f AC with unity (U), f(x,e) = x:

o f(x,y)="f(a,b)?

The unification problem is of type finitary.
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Unification Modulo

Example: for f AC with unity (U), f(x,e) = x:

o f(x,y)="f(a,b)?

e Solutions: {x/e,y/f(a,b)}, {x/f(a,b),y/e}, {x/a,y/b}, and
{x/b.y/a}

The unification problem is of type finitary.
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Unification Modulo

Example: for f A, and idempotent (1), f(x,x) =~ x:

o f(x,f(y,x)) = f(f(x,2),x))?

The unification problem is of type zero (Schmidt-SchauB 1986,
Baader 1986).
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https://doi.org/10.1007/BF02328450
https://doi.org/10.1007/BF02328451

Unification Modulo

Example: for f A, and idempotent (1), f(x,x) =~ x:

o f(x,f(y,x)) = f(f(x,2),x))?
e Solutions: {y/f(u,f(x,u)),z/u},...

The unification problem is of type zero (Schmidt-SchauB 1986,
Baader 1986).
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Unification Modulo

Example: for + AC, and h homomorphism (h),
h(x + y) =~ h(x) + h(y):

e h(y)+a=y+2z?

The unification problem is of type zero and undecidable (Narendran
1996). The same happens for ACUh (Nutt 1990, Baader 1993).
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Unification Modulo

Example: for + AC, and h homomorphism (h),
h(x + y) =~ h(x) + h(y):
e h(y)+a=y+2z?

e Solutions: {y/a,z/h(a)},{y/h(a) + a,z/h*(a)},...,
{y/h (a) + ...+ h(a) + a,z/K*T1(a)}, ...

The unification problem is of type zero and undecidable (Narendran
1996). The same happens for ACUh (Nutt 1990, Baader 1993).
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Synthesis on Nominal Equational Modulo

Timeline on the formalisation of equational reasoning
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Anti-unification - History

@ Introduced by Gordon Plotkin [Plo70] and John Reynolds
[Rey70]

&) First-order: syntactic [Baa91]; C, A, and AC [AEEM14];
idempotent [CK20b], unital [CK20c], semirings [Cer20],
absorptive [ACBK24]

& Higher-Order: patterns [BKLV17], top maximal and shallow
generalisations variants [CK20a], equational patterns [CK19],
modulo [CK20a]

Q See david Cerna and Temur Kutsia survey [CK23].
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Applications

Applications of anti-unification include:

searching a large hypothesis space in inductive logic
programming (ILP) for logic-based machine learning
[CDEM22];

preventing bugs and misconfigurations in software [MBK™20];
£ detecting code clones [VY19];

searching recursion schemes for efficient parallel compilation
[BBH18].
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Anti-unification

Anti-unification

Goal: find the commonalities between two expressions.

s a t

/)\cft /)r\ght
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Anti-Unification

A less general
generahzer

g
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Anti-Unification

Least general
generahzer (Igg)

R
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Syntactic anti-unification




Formal verification - Syntactical case

o terms: tu=x| ()| (t,t) | ft
e Labelled equations (AUTs): E = {s;

2t |i<n}
EU E5 o
~—~ ~—~ ~~
Configurations: o
Unsolved Solved  Substitution
equations equations

Configuration constraints

e All labels in Ey U Es are different,

e no repeated equations appear in Es, and
e no label in Ey U Es belongs to Domain(o).

Solved equations have left- and right-hand sides not headed by the same
symbols.

24 /50



Inference Rules

({fs2ftyUE,S,0)

{s2t}UE,S,{x—fy}oo)

(Decompose Function)

{(s,u) = (t,v)} UE, S, o)

(Decompose Pair) 2

{s2 t,u2VvIUE,S {x— (y,2)}o0)

({s2t}UE,S,0)
(Solve Repeated) =

if s2 t solved and 3x’ withs £t € S
/
(E,S,{x+— x'}oo0) X

X

{s2 t}UE,S,0)

(Solve Non-Repeated) X if if s 2 t solved and thereisnos2tec S

(E{s2t}US,0) .

X

{s % stUE,S, o)

(Syntactic)

if s £ s neither decomposable nor solvable
E,S,{x+—s}oo) x
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Inference Rules

Example

({f(f(c,b),c) £ f{f{d,b),d)},0,id)
({(f(c, b),c) £ (f(d,b),d)},0,{x — fy})
{f{c,b) 2 f(d,b),c 2 d},0,{x > f(z1,2)})

(DecF)

(DecP)

(DecF)

<{<C7 b> = (d, b>,C Zé d}7®7 {X = f(f 7Z2>}>
(DecP) 2

{cédbébcéd}Q{fo<f( ), 2)})

(SoINR)
b2 bc-d}{c—d} {x = f{f{z,z1),22)})

e Z a) (e Z o (e £ bl
0,{c 2 d}, {x = £ (f (2,6),2))

(Synt)

(SolR)

* Generalizer: r = f{f(z,b),2), p = {z — c}, and p. = {z — d}.
26 /50



PVS Verification




Verification Basics

The type Configurationd is represented as

[unsolved, solved : list|AUT], substitution : nice?] and the predicate
validConfiguration?® states the constraints expressed in the
Definition of configuration.

Let (Eu, Es,o) be a Configuration. It has type validConfiguration?
if for eqs = Eu U Es:

disjoint?(Vars(eqs), labels(egs))
card(labels(eqs)) = length(eqs)
disjoint?(Domain(c’), labels(eqs) U Vars(eqs))
Solved?(Es)

NotRepeated?(Es)

> > > >
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https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L121-L121
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L182-L185

Verification Basics

unsolved and solved lists of AUTs (listfAUT]) represent solved and
unsolved equations of a configuration.

Configurations are deterministically classified according to their
derivability type based on the type of their head unsolved AUT:
match_DecF?, match_DecP?, match_Synt?, and match_Sol?.

Let s = t be the head of Eu in a configuration (Eu, Es, o).

X

(Eu, Es, o) has type match_DecF _conf? if s = t has type

X
match_DecF?, specified as:

app?(s) A app?(t) A fun_Symbol(s) = fun_Symbol(t)
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Verification Basics

Then, configurations have the type:

e match_DecF _conf?,
e match_DecP_conf?,
e match_Synt_conf?,

e match_Sol _conf?
or, when the unsolved part is empty,

e normal_configuration?.
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Antiunification Algorithm Specification

The inference rules (DecF), (DecP), and (Synt) were specified as
function declarations DecF, DecP, and Synt, with parameter
configurations of types match_DecF _conf?, match_DecP_conf?,
and match_Synt_conf?, respectively.

The solve rules (SolR) and (SolNR) were integrated into a unique
rule Solve with parameter configuration of type match_Sol_conf?.

To automate the proofs of termination, configuration validity, and
preservation of niceness of the Antiunify algorithm, these properties
were encoded in the types of the functions representing the rules.
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Antiunification Algorithm Specification

E.g., consider the type of the function DecFZ%.

Let ¢ = (Eu,Es,o) and ¢’ = (EU', Es', o) be the input and output
configurations, respectively.

e lIts input type is a configuration of type match_DecF _conf?.
e |ts output type is specified by the dependent type predicate:
tail(Eu') = tail(Eu) A

size(Eu') < size(Eu) A
(label(Eu[0])) o’ = fun_Symbol(Eu[0]) (label(EU'[0]))
—_———

g

head label head function symbol fresh label
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https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L330-L341

Antiunification Algorithm Specification

The Antiunify® algorithm is defined as a recursive function of type
validConfiguration? — validConfiguration?. Its measure is the size
of the unsolved part of the initial configuration.

Antiunify recursively checks the type of the head of the unsolved
part to apply the respective inference rule.

By restricting the types of the functions specifying the inference
rules (DecF), (DecP), (Solve), and (Synt), PVS automatically
proves that Antiunify terminates and that every output of the
Antiunify algorithm fulfils the validConfiguration? predicate.
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https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L454-L471

Anti-unification Algorithm Verification

Let Antiunify((Eu, Es,o)) = (), Es', o). Three auxiliary lemmas
about invariants and configuration preservation are highlighted.

1. antiunify _sub_preserves_terms® states that
if t € Range(o) and disjoint?(Vars(t), labels(Eu)) then
to' = to.
- It is applied twice to (2) and once to (SolveR).
2. antiunify_dom_sub_preserves_vars_unsolved® states that
disjoint?(Domain(c"), Vars(Eu)).
- It is applied once to (Synt).
3. antiunify_solved _labels_preserve_vars_unsolved® states that
disjoint?(labels(Es"), Vars(Eu)).
- It is applied twice to (Synt).

No preservation lemma was required by (DecF) and (DecP), and
(SolveNR) depends on simple preservation lemmas. 33/50
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Anti-unification Verification

The proof of the soundness theorem, antiunif _is_sound, stated

below, follows by induction on the size of configurations and case
analysis.

Let ¢ = (Eu, Es, o) be any input valid configuration, and let
(Eu', ES', ") be the final configuration computed by Antiunify(c).
Then
generalizer?(Eu, o, pea(ES), pagne(ES"))
ie.,
foranyAUTs%tEEu:

x0' per(Es') = s, and x0' pgne(Es') = t

Above, pi and p,g. are substitutions mapping each label in a solved
list of AUTs to the left and right terms of the AUT, respectively.
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Quantitative Data

Formalisation in numbers

Table 1:
Inference Proof size Dependencies
PVS theory Formulas TCCs Rule (3 lines) (4 lines )
Terms 119 37

Substitution 115 18 ) ) )
(DecF) 64 -
(DecP) 140 -

Anti-unification 116 41 (Synt) 269 1624

(SolveR) 245 663
(SolveNR) 63 111

3550
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Linear Anti-unification and Anti-unification modulo

e Variants of anti-unification such as the linear case, give rise to
surprising results. Linear anti-unification is the restriction to
linear solutions.

e Interest in the formalisation of anti-unification for theories with
Commutative, Associative, and Absorptive symbols: C-, A-,
and a-symbols.

e Related a-symbols are a pair of a function and a constant
symbol, (f,ef), satisfying the axioms

{f(er,x) = e, f(x,e¢) = €r}
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Linear Anti-unification

Example
[Communicated by T. Kutsia] Unification type oo and wunary for the

linear and the unrestricted case, respectively.

Equational axioms:

{f(g(x,x)) = g(x,x)}

Problem:
g(a,a) = g(b, b)

Linear solutions: {g(x, ), F(g(x,y)), F(F(g(x,)))-- .}
Unrestricted solution: g(x, x). 37/50



Linear Anti-unification

Example
[Communicated by T. Kutsia] Unification type zero and oo for the

linear and the unrestricted case, respectively.
Equational axioms:
E = f(f(x,a),a) = f(x,a), f(f(x,b),b) = f(x, b)]
Problem:
f(a,a) = f(b, b)
Linear solutions: f(x,y), f(f(x,y),z), f(f(f(x,y),z),u),.... Itisa
descending chain of less general generalisers.

Unrestricted solutions:
{f(x,x), f(f(x,x), x), f(£(f(x,x),x),x),...}.
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Linear Anti-unification

Example
[Communicated by T. Kutsia] Unification type zero and unary for

the linear and the unrestricted case, respectively.

Equational axiom:
E = f(f(x,s(x)), s(x)) = f(x,x)]
Problem:
f(a,s(a)) = f(b,s(b))

Linear solutions:

f(x,s(y)), f(f(x,s(y)), s(2)), F(F(F(x,s(y)),s(2)),s(v)),. ... Itis

a descending chain of less general generalisers.
Unrestricted solution: {f(x,s(x))}.
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Anti-unification in (a)(A)(C)(aA)(aC)-theories

Example

g g
Ef/\a f/\
7N\ 7N
f f o a f
(Y 4y 1)

An a-generalisation and an aA-generalisation will be illustrated.
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Anti-unification in (a)(A)(C)(aA)(aC)-theories

By expanding ¢ in g(ef, a), one obtains:

2N >,

VRN VRN 7N\
f f f f a f
WA

Notice that g(f(f(a, a),f(a,x)),y) is an a-generalisation.
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Anti-unification in (a)(A)(C)(aA)(aC)-theories

Considering the same terms modulo aA, and by expanding ¢ in
g(ef, a), one has:

f/g\a f/g\f
7N\ a/ \f a/ \f
N
/

a

g(f(x,y),y) is an aA-generalisation but not an a-generalisation.
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Anti-unification modulo types

‘ Theory ‘ Anti-unification type ‘ References ‘
Syntactic 1 [Plo70, Rey70]

A w [AEEM14]
C w [AEEM14]

T (u)t w [CK20(]

(U)=2 nullary [CK20(]

ba 00 [ACBK24]

a(C) 00 [ACBK24]

(T)Unital: {f(cr,x) = x, f(x,tr) = x}
(f)Absorptive: {f(ef,x) = ef, f(x,e¢) = €r}
43 /50



Conclusions and Future Work




Conclusions and Future Work

Conclusions

£ Formal certification of nominal equational reasoning procedures
is a target of the cooperation UnB/KCL.

Lo Although anti-unification has become of increasing interest,
formal certification of anti-unification algorithms has not been
explored except for the simplest syntactic case [ARALK™25].

& The development of procedures to solve anti-unification
modulo theories is crucial.

£ Only recently, anti-unification modulo a-, C-, and (aC)-symbols
have been addressed. Procedures combining such properties are

challenging from theoretical and practical perspectives
[ACBK24].
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Thank you for your attention!

Thank you for your attention!
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