Mechanisation of Equational Reasoning'

Libraries: https://github.com/nasa/pvslib/nominal® and TRS&

Mauricio Ayala-Rincén
November 18th, 2025 - Department of Informatics / King's College London

Departamentos de Matemdtica & Ciéncia da Computacio

% universidade de Brasilia

T Research supported by the Royal Society, and the Brazilian agencies CAPES, CNPq,
and FAPDF

https://github.com/nasa/pvslib/tree/master/nominal
https://github.com/nasa/pvslib/tree/master/TRS

Joint Work With

Maria Jdlia D. Lima Daniele Nantes

|
i

R er da

Washington Ribeiro Gabriela Ferreira Thaynara de Lima Mariano Moscato

Marcos Mercandeli David Cerna Temur Kutsia

1/50

1. Equational Reasoning - Unification

2. Anti-unification

3. Syntactic anti-unification

4. PVS Verification

5. Linear Anti-unification and Anti-unification modulo

6. Conclusions and Future Work

2/50

Equational Reasoning - Unification

Equational Problems

e Equality check: s=1t?
e Matching: There exists o such that so = t?
e Unification: There exists o such that so = to?
e Anti-unification: There exist r, o and p such that

ro =sand rp=t?

s and t, and u are terms in some signature and o and p are
substitutions.

3/50

Unification modulo

Unification

Goal: find a substitution that identifies two expressions.

s 2 t

VAN)

sox to

4/50

Syntactic Unification

e Goal: to identify two expressions.

e Method: replace variables with other expressions.

Example: for x and y variables, a and b constants, and f a function
symbol,

e [dentify f(x,a) and f(b,y)

5 /50

Syntactic Unification

e Goal: to identify two expressions.

e Method: replace variables with other expressions.

Example: for x and y variables, a and b constants, and f a function
symbol,

e [dentify f(x,a) and f(b,y)
e solution {x/b,y/a}.

5 /50

Syntactic Unification

Example:

e Solution o = {x/b} for f(x,y) = f(b,y) is more general than
solution v = {x/b,y/b}.

o is more general than ~:

there exists § such that od = ~;

6 = {y/b}.

6/50

Syntactic Unification

Interesting questions:

e Decidability, Unification Type, Correctness and Completeness.
o Complexity.

e With adequate data structures, there are linear solutions
(Martelli-Montanari 1976, Petterson-Wegman 1978).

Syntactic unification is of type unary and linear.

7/50

https://doi.org/10.1145/357162.357169
https://core.ac.uk/download/pdf/82457046.pdf

Unification Modulo

When operators possess equational properties, the problem becomes
more complex.

Example: for f commutative (C), f(x,y) =~ f(y, x):

o f(x,y)="f(a,b)?

The unification problem is of type finitary.

8/50

Unification Modulo

When operators possess equational properties, the problem becomes
more complex.

Example: for f commutative (C), f(x,y) =~ f(y, x):
o f(x,y) =f(a b)?
e Solutions: {x/a,y/b} and {x/b,y/a}.

The unification problem is of type finitary.

8/50

Unification Modulo

Example: for f associative (A), f(f(x,y),z) = f(x, f(y,z)):

o f(x,a)=f(a,x)?

The unification problem is of type infinitary.

9/50

Unification Modulo

Example: for f associative (A), f(f(x,y),z) = f(x, f(y,z)):
o f(x,a)=f(a,x)?
e Solutions: {x/a}, {x/f(a,a)}, {x/f(a,f(a,a))},...

The unification problem is of type infinitary.

9/50

Unification Modulo

Example: for f AC with unity (U), f(x,e) = x:

o f(x,y)="f(a,b)?

The unification problem is of type finitary.

10/50

Unification Modulo

Example: for f AC with unity (U), f(x,e) = x:

o f(x,y)="f(a,b)?

e Solutions: {x/e,y/f(a,b)}, {x/f(a,b),y/e}, {x/a,y/b}, and
{x/b.y/a}

The unification problem is of type finitary.

10/50

Unification Modulo

Example: for f A, and idempotent (1), f(x,x) =~ x:

o f(x,f(y,x)) = f(f(x,2),x))?

The unification problem is of type zero (Schmidt-SchauB 1986,
Baader 1986).

11/50

https://doi.org/10.1007/BF02328450
https://doi.org/10.1007/BF02328451

Unification Modulo

Example: for f A, and idempotent (1), f(x,x) =~ x:

o f(x,f(y,x)) = f(f(x,2),x))?
e Solutions: {y/f(u,f(x,u)),z/u},...

The unification problem is of type zero (Schmidt-SchauB 1986,
Baader 1986).

11/50

https://doi.org/10.1007/BF02328450
https://doi.org/10.1007/BF02328451

Unification Modulo

Example: for + AC, and h homomorphism (h),
h(x + y) =~ h(x) + h(y):

e h(y)+a=y+2z?

The unification problem is of type zero and undecidable (Narendran
1996). The same happens for ACUh (Nutt 1990, Baader 1993).

12 /50

https://doi.org/10.1109/LICS.1996.561463
https://doi.org/10.1109/LICS.1996.561463
https://doi.org/10.1007/3-540-52885-7_118
https://doi.org/10.1145/174130.174133

Unification Modulo

Example: for + AC, and h homomorphism (h),
h(x + y) =~ h(x) + h(y):
e h(y)+a=y+2z?

e Solutions: {y/a,z/h(a)},{y/h(a) + a,z/h*(a)},...,
{y/h (a) + ...+ h(a) + a,z/K*T1(a)}, ...

The unification problem is of type zero and undecidable (Narendran
1996). The same happens for ACUh (Nutt 1990, Baader 1993).

12 /50

https://doi.org/10.1109/LICS.1996.561463
https://doi.org/10.1109/LICS.1996.561463
https://doi.org/10.1007/3-540-52885-7_118
https://doi.org/10.1145/174130.174133

Synthesis Unification modulo i

Synthesis Unification modulo
Unif. | Equality- . I Related
sz N it Matching Unification work
R65
Syntactic 1 O(n) O(n) O(n) MM76
PW78
BKN87
C w o(n?) NP-comp. NP-comp. 8
KN87
A 00 O(n) NP-comp. NP-hard M7
BKN87
M
AU 00 O(n) NP-comp. decidable I
KN87
Klima02
Al 0 O(n) NP-comp. NP-comp. SS86
Baader86

13/50

https://dl.acm.org/doi/10.1145/321250.321253
https://doi.org/10.1145/357162.357169
https://core.ac.uk/download/pdf/82457046.pdf
https://doi.org/10.1016/S0747-7171(87)80027-5
https://doi.org/10.1145/36330.36332
 https://doi.org/10.2307/2273922
https://doi.org/10.1016/S0747-7171(87)80027-5
https://doi.org/10.2307/2273922
https://doi.org/10.1145/36330.36332
https://doi.org/10.1007/3-540-45687-2_35
https://doi.org/10.1007/BF02328450
https://doi.org/10.1007/BF02328451

Synthesis Unification modulo

Synthesis Unification modulo
Theory l*jynplz Eg:;:t]yg_ Matching Unification ijlg;clfd
BKN87
AC w 0o(n®) NP-comp. NP-comp. KN87
KN92
ACU w o(n®) NP-comp. NP-comp. KN92
AC(U)I w - - NP-comp. KN92
BMMO20
D w - NP-hard NP-hard TA87
B93
ACh 0 - - undecidable N96
EL18
ACUh 0 - - undecidable B93
N96

14 /50

https://doi.org/10.1016/S0747-7171(87)80027-5
https://doi.org/10.1145/36330.36332
https://doi.org/10.1007/BF00245463
https://doi.org/10.1007/BF00245463
https://doi.org/10.1007/BF00245463
https://doi.org/10.1017/S0960129519000185
https://doi.org/10.1016/S0747-7171(87)80026-3
https://doi.org/10.1145/174130.174133
https://doi.org/10.1109/LICS.1996.561463
https://arxiv.org/abs/1811.05602
https://doi.org/10.1145/174130.174133
https://doi.org/10.1109/LICS.1996.561463

Synthesis Unification Nominal Modulo
Theory tjynplz Eﬁs(i:tnyg_ Matching Unification R\(/evlsrt:d
UPG04 LV10
Ry 1 O(nlogn) | O(nlogn) 0(n?) CF08 CF10
LSFA2015
LOPSTR2017
FroCoS2017
C oo | O(n?logn)| NP-comp. NP-comp. TCS2019
LOPSTR2019
MSCS2021
A 00 O(nlogn) | NP-comp. NP-hard LSFA2016
TCS2019
LSFA2016
AC w | O(n*logn)| NP-comp. NP-comp. TC52019
CICM2023
JAR2024
15 /50

https://doi.org/10.1016/j.tcs.2004.06.016
https://doi.org/10.4230/LIPIcs.RTA.2010.209
https://doi.org/10.1007/978-3-540-69937-8_11
https://doi.org/10.1007/978-3-642-20551-4_15
https://doi.org/10.1016/j.entcs.2016.06.005
https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1016/j.tcs.2019.02.020
https://doi.org/10.1007/978-3-030-45260-5_8
https://doi.org/10.1017/S0960129521000050
https://doi.org/10.1016/j.entcs.2017.04.003
https://doi.org/10.1016/j.tcs.2019.02.020
https://doi.org/10.1016/j.entcs.2017.04.003
https://doi.org/10.1016/j.tcs.2019.02.020
https://link.springer.com/chapter/10.1007/978-3-031-42753-4_4
https://doi.org/10.1007/s10817-024-09714-5

Synthesis on Nominal Equational Modulo

Timeline on the formalisation of equational reasoning

Silva et al.

Carvalho et al. Silva et al. Silva et al.

Reynolds | Plotkin e el =, o " e, O, Ttiin o
Rl § Dbl Nom.-Unif. . - Il Nom. C-Match. Unif. ISR Nowm. AC-Match.
Intell. Intell s Survey

1970 1970 1ICAT 2023

Anti-unification First-order syntax minal Reasoning,

1970 1975 0 1985

Urban ef

Stickel s Form. Nominal

AC-Unif. AC-unif.
IJCAR 1975 CADE 1984
J.ACM 1981 JSC 1987

Calvés&Fernandez illaret l§ Alpuente et al. | Cerna&Kutsia “";‘Z;‘,l"lzf

Nom. Unif. Anti-Unif. Unital B
Inf.&C. Anti-Unif.
2014

modulo

)
RTA 2010

Anti-unification

Joint Work With

17th NASA Formal Mthods Symposium
(NFM 2025)

msburg, VA, USA, 11-13 June 2025

N Doworallle Mention N2

awarded to the pagen
. Ayala-Risi. 7. rbvielly de Lins. W. Dias Lima, . Woseats
aed 7.

Ziasia
Verdfication of an Auti-Unification Algorithm in PUS

o ot P A
A ol T 85 P G-l T 585 g -l %

s
Maria Jilia Dias Lima Marcos Mercandeli
CC / U. Brasilia Math / U. Brasilia NASA Formal Methods 2025

2

i

Thaynara Arielly de Lima Mariano Miguel Moscato Temur Kutsia
U. F. Goias AMA - NASA LaRC RISC/JKU Linz 17 / 50

Anti-unification - History

@ Introduced by Gordon Plotkin [Plo70] and John Reynolds
[Rey70]

&) First-order: syntactic [Baa91]; C, A, and AC [AEEM14];
idempotent [CK20b], unital [CK20c], semirings [Cer20],
absorptive [ACBK24]

& Higher-Order: patterns [BKLV17], top maximal and shallow
generalisations variants [CK20a], equational patterns [CK19],
modulo [CK20a]

Q See david Cerna and Temur Kutsia survey [CK23].

18 /50

Applications

Applications of anti-unification include:

searching a large hypothesis space in inductive logic
programming (ILP) for logic-based machine learning
[CDEM22];

preventing bugs and misconfigurations in software [MBK™20];
£ detecting code clones [VY19];

searching recursion schemes for efficient parallel compilation
[BBH18].

19/50

Anti-unification

Anti-unification

Goal: find the commonalities between two expressions.

s a t

/)\cft /)r\ght

20 /50

e

21/50

Anti-Unification

A less general
generahzer

g

22 /50

Anti-Unification

Least general
generahzer (Igg)

R

23 /50

Syntactic anti-unification

Formal verification - Syntactical case

o terms: tu=x| ()| (t,t) | ft
e Labelled equations (AUTs): E = {s;

2t |i<n}
EU E5 o
~—~ ~—~ ~~
Configurations: o
Unsolved Solved Substitution
equations equations

Configuration constraints

e All labels in Ey U Es are different,

e no repeated equations appear in Es, and
e no label in Ey U Es belongs to Domain(o).

Solved equations have left- and right-hand sides not headed by the same
symbols.

24 /50

Inference Rules

({fs2ftyUE,S,0)

{s2t}UE,S,{x—fy}oo)

(Decompose Function)

{(s,u) = (t,v)} UE, S, o)

(Decompose Pair) 2

{s2 t,u2VvIUE,S {x— (y,2)}o0)

({s2t}UE,S,0)
(Solve Repeated) =

if s2 t solved and 3x’ withs £t € S
/
(E,S,{x+— x'}oo0) X

X

{s2 t}UE,S,0)

(Solve Non-Repeated) X if if s 2 t solved and thereisnos2tec S

(E{s2t}US,0) .

X

{s % stUE,S, o)

(Syntactic)

if s £ s neither decomposable nor solvable
E,S,{x+—s}oo) x

25 /50

Inference Rules

Example

({f(f(c,b),c) £ f{f{d,b),d)},0,id)
({(f(c, b),c) £ (f(d,b),d)},0,{x — fy})
{f{c,b) 2 f(d,b),c 2 d},0,{x > f(z1,2)})

(DecF)

(DecP)

(DecF)

<{<C7 b> = (d, b>,C Zé d}7®7 {X = f(f 7Z2>}>
(DecP) 2

{cédbébcéd}Q{fo<f(), 2)})

(SoINR)
b2 bc-d}{c—d} {x = f{f{z,z1),22)})

e Z a) (e Z o (e £ bl
0,{c 2 d}, {x = £ (f (2,6),2))

(Synt)

(SolR)

* Generalizer: r = f{f(z,b),2), p = {z — c}, and p. = {z — d}.
26 /50

PVS Verification

Verification Basics

The type Configurationd is represented as

[unsolved, solved : list|AUT], substitution : nice?] and the predicate
validConfiguration?® states the constraints expressed in the
Definition of configuration.

Let (Eu, Es,o) be a Configuration. It has type validConfiguration?
if for eqs = Eu U Es:

disjoint?(Vars(eqs), labels(egs))
card(labels(eqs)) = length(eqs)
disjoint?(Domain(c’), labels(eqs) U Vars(eqs))
Solved?(Es)

NotRepeated?(Es)

> > > >

27 /50

https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L121-L121
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L182-L185

Verification Basics

unsolved and solved lists of AUTs (listfAUT]) represent solved and
unsolved equations of a configuration.

Configurations are deterministically classified according to their
derivability type based on the type of their head unsolved AUT:
match_DecF?, match_DecP?, match_Synt?, and match_Sol?.

Let s = t be the head of Eu in a configuration (Eu, Es, o).

X

(Eu, Es, o) has type match_DecF _conf? if s = t has type

X
match_DecF?, specified as:

app?(s) A app?(t) A fun_Symbol(s) = fun_Symbol(t)

28 /50

Verification Basics

Then, configurations have the type:

e match_DecF _conf?,
e match_DecP_conf?,
e match_Synt_conf?,

e match_Sol _conf?
or, when the unsolved part is empty,

e normal_configuration?.

29 /50

Antiunification Algorithm Specification

The inference rules (DecF), (DecP), and (Synt) were specified as
function declarations DecF, DecP, and Synt, with parameter
configurations of types match_DecF _conf?, match_DecP_conf?,
and match_Synt_conf?, respectively.

The solve rules (SolR) and (SolNR) were integrated into a unique
rule Solve with parameter configuration of type match_Sol_conf?.

To automate the proofs of termination, configuration validity, and
preservation of niceness of the Antiunify algorithm, these properties
were encoded in the types of the functions representing the rules.

30/50

Antiunification Algorithm Specification

E.g., consider the type of the function DecFZ%.

Let ¢ = (Eu,Es,o) and ¢’ = (EU', Es', o) be the input and output
configurations, respectively.

e lIts input type is a configuration of type match_DecF _conf?.
e |ts output type is specified by the dependent type predicate:
tail(Eu') = tail(Eu) A

size(Eu') < size(Eu) A
(label(Eu[0])) o’ = fun_Symbol(Eu[0]) (label(EU'[0]))
—_———

g

head label head function symbol fresh label

31/50

https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L330-L341

Antiunification Algorithm Specification

The Antiunify® algorithm is defined as a recursive function of type
validConfiguration? — validConfiguration?. Its measure is the size
of the unsolved part of the initial configuration.

Antiunify recursively checks the type of the head of the unsolved
part to apply the respective inference rule.

By restricting the types of the functions specifying the inference
rules (DecF), (DecP), (Solve), and (Synt), PVS automatically
proves that Antiunify terminates and that every output of the
Antiunify algorithm fulfils the validConfiguration? predicate.

32/50

https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L454-L471

Anti-unification Algorithm Verification

Let Antiunify((Eu, Es,o)) = (), Es', o). Three auxiliary lemmas
about invariants and configuration preservation are highlighted.

1. antiunify _sub_preserves_terms® states that
if t € Range(o) and disjoint?(Vars(t), labels(Eu)) then
to' = to.
- It is applied twice to (2) and once to (SolveR).
2. antiunify_dom_sub_preserves_vars_unsolved® states that
disjoint?(Domain(c"), Vars(Eu)).
- It is applied once to (Synt).
3. antiunify_solved _labels_preserve_vars_unsolved® states that
disjoint?(labels(Es"), Vars(Eu)).
- It is applied twice to (Synt).

No preservation lemma was required by (DecF) and (DecP), and
(SolveNR) depends on simple preservation lemmas. 33/50

https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L566-L569
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L572-L573
https://github.com/nasa/pvslib/tree/0835a23b168c9e03d29e470fdd7a05e735172dcc/TRS/antiunif.pvs#L583-L584

Anti-unification Verification

The proof of the soundness theorem, antiunif _is_sound, stated

below, follows by induction on the size of configurations and case
analysis.

Let ¢ = (Eu, Es, o) be any input valid configuration, and let
(Eu', ES', ") be the final configuration computed by Antiunify(c).
Then
generalizer?(Eu, o, pea(ES), pagne(ES"))
ie.,
foranyAUTs%tEEu:

x0' per(Es') = s, and x0' pgne(Es') = t

Above, pi and p,g. are substitutions mapping each label in a solved
list of AUTs to the left and right terms of the AUT, respectively.

34 /50

Quantitative Data

Formalisation in numbers

Table 1:
Inference Proof size Dependencies
PVS theory Formulas TCCs Rule (3 lines) (4 lines)
Terms 119 37

Substitution 115 18)))
(DecF) 64 -
(DecP) 140 -

Anti-unification 116 41 (Synt) 269 1624

(SolveR) 245 663
(SolveNR) 63 111

3550

Linear Anti-unification and
Anti-unification modulo

Linear Anti-unification and Anti-unification modulo

e Variants of anti-unification such as the linear case, give rise to
surprising results. Linear anti-unification is the restriction to
linear solutions.

e Interest in the formalisation of anti-unification for theories with
Commutative, Associative, and Absorptive symbols: C-, A-,
and a-symbols.

e Related a-symbols are a pair of a function and a constant
symbol, (f,ef), satisfying the axioms

{f(er,x) = e, f(x,e¢) = €r}

36 /50

Linear Anti-unification

Example
[Communicated by T. Kutsia] Unification type oo and wunary for the

linear and the unrestricted case, respectively.

Equational axioms:

{f(g(x,x)) = g(x,x)}

Problem:
g(a,a) = g(b, b)

Linear solutions: {g(x,), F(g(x,y)), F(F(g(x,)))-- .}
Unrestricted solution: g(x, x). 37/50

Linear Anti-unification

Example
[Communicated by T. Kutsia] Unification type zero and oo for the

linear and the unrestricted case, respectively.
Equational axioms:
E = f(f(x,a),a) = f(x,a), f(f(x,b),b) = f(x, b)]
Problem:
f(a,a) = f(b, b)
Linear solutions: f(x,y), f(f(x,y),z), f(f(f(x,y),z),u),.... Itisa
descending chain of less general generalisers.

Unrestricted solutions:
{f(x,x), f(f(x,x), x), f(£(f(x,x),x),x),...}.
38 /50

Linear Anti-unification

Example
[Communicated by T. Kutsia] Unification type zero and unary for

the linear and the unrestricted case, respectively.

Equational axiom:
E = f(f(x,s(x)), s(x)) = f(x,x)]
Problem:
f(a,s(a)) = f(b,s(b))

Linear solutions:

f(x,s(y)), f(f(x,s(y)), s(2)), F(F(F(x,s(y)),s(2)),s(v)),. ... Itis

a descending chain of less general generalisers.
Unrestricted solution: {f(x,s(x))}.

39/50

Anti-unification in (a)(A)(C)(aA)(aC)-theories

Example

g g
Ef/\a f/\
7N\ 7N
f f o a f
(Y 4y 1)

An a-generalisation and an aA-generalisation will be illustrated.

40 /50

Anti-unification in (a)(A)(C)(aA)(aC)-theories

By expanding ¢ in g(ef, a), one obtains:

2N >,

VRN VRN 7N\
f f f f a f
WA

Notice that g(f(f(a, a),f(a,x)),y) is an a-generalisation.

41/50

Anti-unification in (a)(A)(C)(aA)(aC)-theories

Considering the same terms modulo aA, and by expanding ¢ in
g(ef, a), one has:

f/g\a f/g\f
7N\ a/ \f a/ \f
N
/

a

g(f(x,y),y) is an aA-generalisation but not an a-generalisation.

42 /50

Anti-unification modulo types

‘ Theory ‘ Anti-unification type ‘ References ‘
Syntactic 1 [Plo70, Rey70]

A w [AEEM14]
C w [AEEM14]

T (u)t w [CK20(]

(U)=2 nullary [CK20(]

ba 00 [ACBK24]

a(C) 00 [ACBK24]

(T)Unital: {f(cr,x) = x, f(x,tr) = x}
(f)Absorptive: {f(ef,x) = ef, f(x,e¢) = €r}
43 /50

Conclusions and Future Work

Conclusions and Future Work

Conclusions

£ Formal certification of nominal equational reasoning procedures
is a target of the cooperation UnB/KCL.

Lo Although anti-unification has become of increasing interest,
formal certification of anti-unification algorithms has not been
explored except for the simplest syntactic case [ARALK™25].

& The development of procedures to solve anti-unification
modulo theories is crucial.

£ Only recently, anti-unification modulo a-, C-, and (aC)-symbols
have been addressed. Procedures combining such properties are

challenging from theoretical and practical perspectives
[ACBK24].

44 /50

Thank you for your attention!

Thank you for your attention!

45 /50

References i

[Mauricio Ayala-Rincén, David M. Cerna, Andrés
Felipe Gonzélez Barragan, and Temur Kutsia, Equational
Anti-unification over Absorption Theories, |JCAR, 2024.

[Maria Alpuente, Santiago Escobar, Javier Espert, and José
Meseguer, A modular order-sorted equational generalization
algorithm, Information and Computation 235 (2014), 98-136.

[§ Mauricio Ayala-Rincén, Thaynara Arielly de Lima, Temur
Kutsia, Mariano Moscato, and Maria Julia Dias, Verification of
an Anti-Unification Algorithm in PVS, 17th Int. Symposium
NASA Formal Methods NFM, Lecture Notes in Computer
Science, vol. In press, Springer, 2025.

46 /50

References ii

E

E

Franz Baader, Unification, weak unification, upper bound, lower
bound, and generalization problems, RTA, 1991.

Adam D. Barwell, Christopher Brown, and Kevin Hammond,
Finding parallel functional pearls: Automatic parallel recursion
scheme detection in haskell functions via anti-unification,
Future Gener. Comput. Syst. 79 (2018), 669-686.

Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu
Villaret, Higher-order pattern anti-unification in linear time, J.
Autom. Reason. 58 (2017), no. 2, 293-310.

Andrew Cropper, Sebastijan Dumancic, Richard Evans, and
Stephen H. Muggleton, Inductive logic programming at 30,
Mach. Learn. 111 (2022), no. 1, 147-172.

47 /50

References iii

[§ David M. Cerna, Anti-unification and the theory of semirings,
Theo. Com. Sci. 848 (2020), 133-139.

[§ David M. Cerna and Temur Kutsia, A generic framework for

higher-order generalizations, FSCD, 2019.

B , Higher-order pattern generalization modulo equational
theories, Math. Struct. Comput. Sci. 30 (2020), no. 6, 627-663.

El , Idempotent anti-unification, ACM Trans. Comput. Log.
21 (2020), no. 2, 10:1-10:32.

B , Unital anti-unification: type algorithms, 2020.

B , Anti-unification and generalization: A survey, |JCAI,

2023.

48 /50

References iv

[Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, Chetan Bansal,
Chandra Maddila, B. Ashok, Sumit Asthana, Christian Bird,
and Aditya Kumar, Rex: Preventing bugs and misconfiguration
in large services using correlated change analysis, 17th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI), 2020, pp. 435-448.

[Gordon D. Plotkin, A note on inductive generalization, Machine
Intelligence 5 (1970), 153-163.

[d John C. Reynolds, Transformational system and the algebric
structure of atomic formulas, Machine Intelligence 5 (1970),
135-151.

49 /50

References v

@ Wim Vanhoof and Gonzague Yernaux, Generalization-driven
semantic clone detection in CLP, 29th Int. Symposium on

Logic-Based Program Synthesis and Transformation, LOPSTR,
LNCS, vol. 12042, 2019, pp. 228-242.

50/ 50

	Equational Reasoning - Unification
	Anti-unification
	Syntactic anti-unification
	PVS Verification
	Linear Anti-unification and Anti-unification modulo
	Conclusions and Future Work

