

Graded Quantitative Narrowing

Mauricio Ayala Rincón¹ Thaynara Arielly de Lima² Georg Ehling³ Temur Kutsia³

¹Universidade de Brasília, Brazil

²Universidade Federal de Goiás, Brazil

³Research Institute for Symbolic Computation, JKU Linz, Austria

18th Conference on Intelligent Computer Mathematics
October 8, 2025

Narrowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Huet 1980).

Narrowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Huet 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation $n + n = 2$.

Narrowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Huet 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation $n + n = 2$.

TRS: $R = \{Z + x \rightarrow x, S(x) + y \rightarrow S(x + y)\}$

Narrowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation $n + n = 2$.

TRS: $R = \{Z + x \rightarrow x, S(x) + y \rightarrow S(x + y)\}$

Narrowing derivation:

$$n + n =? S(S(Z))$$

Narrowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation $n + n = 2$.

TRS: $R = \{Z + x \rightarrow x, \underline{S(x) + y \rightarrow S(x + y)}\}$

Narrowing derivation:

$$\underline{n + n} =? S(S(Z))$$

Narrowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation $n + n = 2$.

TRS: $R = \{Z + x \rightarrow x, \underline{S(x) + y \rightarrow S(x + y)}\}$

Narrowing derivation:

$$\underline{n + n} =? S(S(Z))$$

Narrowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation $n + n = 2$.

TRS: $R = \{Z + x \rightarrow x, \underline{S(x) + y \rightarrow S(x + y)}\}$

Narrowing derivation:

$$\underline{n + n} =? S(S(Z))$$

Substitution

$$\{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\}$$

Narrowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation $n + n = 2$.

TRS: $R = \{Z + x \rightarrow x, \underline{S(x) + y \rightarrow S(x + y)}$

Narrowing derivation:

$$\begin{array}{ll} \underline{n + n} =^? S(S(Z)) & \text{Substitution} \\ \rightsquigarrow S(x' + S(x')) =^? S(S(Z)) & \{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\} \end{array}$$

Narrowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation $n + n = 2$.

TRS: $R = \{Z + x \rightarrow x, S(x) + y \rightarrow S(x + y)\}$

Narrowing derivation:

$$\begin{array}{ll} n + n =? S(S(Z)) & \text{Substitution} \\ \rightsquigarrow S(x' + S(x')) =? S(S(Z)) & \{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\} \end{array}$$

Narrowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation $n + n = 2$.

TRS: $R = \{Z + x \rightarrow x, S(x) + y \rightarrow S(x + y)\}$

Narrowing derivation:

$$\begin{array}{ll} n + n =? S(S(Z)) & \text{Substitution} \\ \rightsquigarrow S(\underline{x'} + S(x')) =? S(S(Z)) & \{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\} \end{array}$$

Narrowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation $n + n = 2$.

TRS: $R = \{\underline{Z + x \rightarrow x}, \ S(x) + y \rightarrow S(x + y)\}$

Narrowing derivation:

$$\begin{array}{ll} n + n =? S(S(Z)) & \text{Substitution} \\ \rightsquigarrow S(\underline{x' + S(x')}) =? S(S(Z)) & \{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\} \end{array}$$

Narrowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation $n + n = 2$.

TRS: $R = \{ \underline{Z + x \rightarrow x}, \ S(x) + y \rightarrow S(x + y) \}$

Narrowing derivation:

$$\begin{array}{ll}
 n + n =? S(S(Z)) & \text{Substitution} \\
 \rightsquigarrow S(\underline{x' + S(x')}) =? S(S(Z)) & \{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\} \\
 & \{x' \mapsto Z, x \mapsto S(Z)\}
 \end{array}$$

Narrowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation $n + n = 2$.

TRS: $R = \{Z + x \rightarrow \underline{x}, S(x) + y \rightarrow S(x + y)\}$

Narrowing derivation:

$$\begin{array}{ll} n + n =? S(S(Z)) & \text{Substitution} \\ \rightsquigarrow S(\underline{x'} + S(x')) =? S(S(Z)) & \{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\} \\ \rightsquigarrow S(\underline{S(Z)}) =? S(S(Z)) & \{x' \mapsto Z, x \mapsto S(Z)\} \end{array}$$

Narrowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation $n + n = 2$.

TRS: $R = \{Z + x \rightarrow x, S(x) + y \rightarrow S(x + y)\}$

Narrowing derivation:

$$\begin{array}{ll} n + n =? S(S(Z)) & \text{Substitution} \\ \rightsquigarrow S(x' + S(x')) =? S(S(Z)) & \{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\} \\ \rightsquigarrow S(S(Z)) =? S(S(Z)) & \{x' \mapsto Z, x \mapsto S(Z)\} \end{array}$$

Narrowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation $n + n = 2$.

TRS: $R = \{Z + x \rightarrow x, S(x) + y \rightarrow S(x + y)\}$

Narrowing derivation:

$$\begin{array}{ll} n + n =? S(S(Z)) & \text{Substitution} \\ \rightsquigarrow S(x' + S(x')) =? S(S(Z)) & \{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\} \\ \rightsquigarrow \underline{S(S(Z))} =? S(S(Z)) & \{x' \mapsto Z, x \mapsto S(Z)\} \end{array}$$

Narrowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation $n + n = 2$.

TRS: $R = \{Z + x \rightarrow x, S(x) + y \rightarrow S(x + y)\}$

Narrowing derivation:

$$\begin{array}{ll}
 n + n =? S(S(Z)) & \text{Substitution} \\
 \rightsquigarrow S(x' + S(x')) =? S(S(Z)) & \{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\} \\
 \rightsquigarrow S(S(Z)) =? S(S(Z)) & \{x' \mapsto Z, x \mapsto S(Z)\} \\
 \rightsquigarrow \text{TRUE} &
 \end{array}$$

Narrowing

- Classic technique for solving equational problems.
- Like term rewriting, but variables of terms may be instantiated.
- Sound and complete method for unification w.r.t. complete TRSs (Hullot 1980).

Example (Middeldorp & Hamoen 1994)

Use narrowing to solve the equation $n + n = 2$.

TRS: $R = \{Z + x \rightarrow x, S(x) + y \rightarrow S(x + y)\}$

Narrowing derivation:

$$\begin{array}{ll}
 n + n =? S(S(Z)) & \text{Substitution} \\
 \rightsquigarrow S(x' + S(x')) =? S(S(Z)) & \{x \mapsto x', y \mapsto S(x'), n \mapsto S(x')\} \\
 \rightsquigarrow S(S(Z)) =? S(S(Z)) & \{x' \mapsto Z, x \mapsto S(Z)\} \\
 \rightsquigarrow \text{TRUE} &
 \end{array}$$

Computed Solution: $\{n \mapsto S(Z)\}$

Quantitative equational reasoning

Example

Consider the equation $n + 1 = 3n$.

It does not have an exact solution in \mathbb{N} , but $\{n \mapsto 0\}$ and $\{n \mapsto 1\}$ could be considered approximate solutions.

- How can this idea (approximate solutions) be formalized? How can rewrite systems be extended to include quantitative information?
 - *Quantitative equational reasoning* (Gavazzo & Di Florio 2023)
- How can narrowing be transferred to the quantitative scenario?
 - this work

Quantitative equational reasoning

- Equip equations with degrees to measure similarity/proximity of terms rather than just equality: $\varepsilon \Vdash t \approx s$.
- Degrees could correspond to a probability, distance in a metric space,...
- Main requirements: **compare** and **compose** degrees.

Quantitative equational reasoning

- Equip equations with degrees to measure similarity/proximity of terms rather than just equality: $\varepsilon \Vdash t \approx s$.
- Degrees could correspond to a probability, distance in a metric space,...
- Main requirements: **compare** and **compose** degrees.

Definition (Quantale)

Quantale: $\Omega = (\Omega, \precsim, \otimes, \kappa)$, where

- $(\Omega, \kappa, \otimes)$ is a monoid
- (Ω, \precsim) is a complete lattice (with join \vee and meet \wedge)
- Distributivity laws:

$$\delta \otimes \left(\bigvee_{i \in I} \varepsilon_i \right) = \bigvee_{i \in I} (\delta \otimes \varepsilon_i), \quad \left(\bigvee_{i \in I} \varepsilon_i \right) \otimes \delta = \bigvee_{i \in I} (\varepsilon_i \otimes \delta)$$

Quantitative equational reasoning

- Equip equations with degrees to measure similarity/proximity of terms rather than just equality: $\varepsilon \Vdash t \approx s$.
- Degrees could correspond to a probability, distance in a metric space,...
- Main requirements: **compare** and **compose** degrees.

Definition (Quantale)

Quantale: $\Omega = (\Omega, \precsim, \otimes, \kappa)$, where

- $(\Omega, \kappa, \otimes)$ is a monoid
- (Ω, \precsim) is a complete lattice (with join \vee and meet \wedge)
- Distributivity laws:

$$\delta \otimes \left(\bigvee_{i \in I} \varepsilon_i \right) = \bigvee_{i \in I} (\delta \otimes \varepsilon_i), \quad \left(\bigvee_{i \in I} \varepsilon_i \right) \otimes \delta = \bigvee_{i \in I} (\varepsilon_i \otimes \delta)$$

- We assume that we are working with *Lawverean* quantales, i.e. that
 - ① \otimes is commutative,
 - ② $\kappa = \top$,
 - ③ if $\varepsilon \otimes \delta = \perp$, then either $\varepsilon = \perp$ or $\delta = \perp$,
 - ④ $\kappa \neq \perp$.

Examples of Lawverean quantales: \mathbb{L} and \mathbb{I}

Example (Lawvere quantale)

- $\mathbb{L} = ([0, \infty], \geq, +, 0)$
- Note the direction of the order: 0 is the top element, ∞ is the bottom element.
- View terms as elements of metric spaces, degrees as distances.
- Read $\varepsilon \Vdash t \approx s$ as “the distance between t and s is at most ε ”.
- Corresponds to “Quantitative algebraic reasoning” (Mardare, Panangaden & Plotkin 2016).

Examples of Lawverean quantales: \mathbb{L} and \mathbb{I}

Example (Lawvere quantale)

- $\mathbb{L} = ([0, \infty], \geq, +, 0)$
- Note the direction of the order: 0 is the top element, ∞ is the bottom element.
- View terms as elements of metric spaces, degrees as distances.
- Read $\varepsilon \Vdash t \approx s$ as “the distance between t and s is at most ε ”.
- Corresponds to “Quantitative algebraic reasoning” (Mardare, Panangaden & Plotkin 2016).

Example (Fuzzy quantales)

- $\mathbb{I} = ([0, 1], \leq, \otimes, 1)$, where \otimes is multiplication or minimum.
- View degrees as “truth values”, similar to probabilities.
- Degree 1 corresponds to TRUE, degree 0 to FALSE.
- Corresponds to reasoning with fuzzy similarity relations (w.r.t product/minimum T -norm).

Examples of Lawverean quantales: \mathbb{L} and \mathbb{I}

Example (Lawvere quantale)

- $\mathbb{L} = ([0, \infty], \geq, +, 0)$
- Note the direction of the order: 0 is the top element, ∞ is the bottom element.
- View terms as elements of metric spaces, degrees as distances.
- Read $\varepsilon \Vdash t \approx s$ as “the distance between t and s is at most ε ”.
- Corresponds to “Quantitative algebraic reasoning” (Mardare, Panangaden & Plotkin 2016).

Example (Fuzzy quantales)

- $\mathbb{I} = ([0, 1], \leq, \otimes, 1)$, where \otimes is multiplication or minimum.
- View degrees as “truth values”, similar to probabilities.
- Degree 1 corresponds to TRUE, degree 0 to FALSE.
- Corresponds to reasoning with fuzzy similarity relations (w.r.t product/minimum T -norm).

Quantitative equational reasoning (Gavazzo & Di Florio 2023) covers these (and more) frameworks.

Graded signatures (Gavazzo & Di Florio 2023)

Definition (Change of base endofunctor)

A monotone map $h: \Omega \rightarrow \Omega$ is a CBE if it preserves the unit, products and joins: $h(\kappa) = \kappa$, $h(\varepsilon) \otimes h(\delta) = h(\varepsilon \otimes \delta)$, and $h(\bigvee_{i \in I} \varepsilon_i) = \bigvee_{i \in I} h(\varepsilon_i)$

CBEs can be used to describe how degrees are transformed under function applications.

Definition (Graded signature)

Graded signature \mathcal{F} : A set of function symbols, each endowed with a tuple (ϕ_1, \dots, ϕ_n) of CBEs called modal arities.

Notation: $f : (\phi_1, \dots, \phi_n) \in \mathcal{F}$

Definition (Grade of a term)

The grade of a position p of a term t is defined inductively via

- $\partial_\lambda(t) := \mathbb{1}$, (λ : top position, $\mathbb{1}$: identity map)
- $\partial_{i.p}(f(t_1, \dots, t_n)) := \phi_i \circ \partial_p(t_i)$ (where $f : (\phi_1, \dots, \phi_n) \in \mathcal{F}$).

Graded quantitative equational theories (Gavazzo & Di Florio 2023)

- Quantitative ternary relation E : finite set of triples (t, s, ε) (where t, s are terms, $\varepsilon \in \Omega$)
- View elements as quantitative equations: write $\varepsilon \Vdash t \approx s$.

Graded quantitative equational theories (Gavazzo & Di Florio 2023)

- Quantitative ternary relation E : finite set of triples (t, s, ε) (where t, s are terms, $\varepsilon \in \Omega$)
- View elements as quantitative equations: write $\varepsilon \Vdash t \approx s$.
- Quantitative equational theory induced by E is obtained by the following inference rules:

$$(Ax) \frac{\varepsilon \Vdash t \approx s \in E}{\varepsilon \Vdash t =_E s}$$

$$(Refl) \frac{}{\varepsilon \Vdash t =_E t}$$

$$(Sym) \frac{\varepsilon \Vdash t =_E s}{\varepsilon \Vdash s =_E t}$$

$$(Trans) \frac{\varepsilon \Vdash t =_E s \quad \delta \Vdash s =_E r}{\varepsilon \otimes \delta \Vdash t =_E r}$$

$$(Ord) \frac{\varepsilon \Vdash t =_E s \quad \delta \lesssim \varepsilon}{\delta \Vdash t =_E s}$$

$$(Ampl) \frac{\varepsilon_1 \Vdash t_1 =_E s_1 \quad \dots \quad \varepsilon_n \Vdash t_n =_E s_n \quad f : (\phi_1, \dots, \phi_n) \in \mathcal{F}}{\phi_1(\varepsilon_1) \otimes \dots \otimes \phi_n(\varepsilon_n) \Vdash f(t_1, \dots, t_n) =_E f(s_1, \dots, s_n)}$$

$$(Subst) \frac{\varepsilon \Vdash t =_E s}{\varepsilon \Vdash t\sigma =_E s\sigma}$$

$$(Join) \frac{\varepsilon_1 \Vdash t =_E s \quad \dots \quad \varepsilon_n \Vdash t =_E s}{\varepsilon_1 \vee \dots \vee \varepsilon_n \Vdash t =_E s}$$

Quantitative rewriting and narrowing

- Let R be a quantitative ternary relation.
- View elements of R as quantitative rewrite rules: write $\varepsilon \Vdash t \mapsto_R s$

Definition (Quantitative rewrite relation \rightarrow_R)

\rightarrow_R is obtained by closing R under

$$\frac{\varepsilon \Vdash I \mapsto_R r}{\partial_p(s)(\varepsilon) \Vdash s[I\sigma]_p \rightarrow_R s[r\sigma]_p}.$$

Definition (Quantitative narrowing relation \rightsquigarrow_R)

\rightsquigarrow_R is obtained by closing R under

$$\frac{\varepsilon \Vdash I \mapsto_R r}{\partial_p(s)(\varepsilon) \Vdash s \rightsquigarrow_R (s[r\rho]_p)\sigma},$$

where ρ is a variable renaming and $\sigma = \text{mgu}_\emptyset(s|_p, I\rho)$.

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), \mathbf{1} \Vdash \mathbf{S}(x) \mapsto x\}$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$n + S(Z) =^? (n + n) + n$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\underline{n + S(Z)} =^? (n + n) + n$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash \underline{x + S(y) \mapsto S(x + y)}, 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\underline{n + S(Z)} =^? (n + n) + n$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash \underline{x + S(y) \mapsto S(x + y)}, 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\underline{n + S(Z)} =^? (n + n) + n \quad \text{Substitution}$$
$$\{x \mapsto n, y \mapsto Z\}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} \underline{n + S(Z)} =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(\underline{n + Z}) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash \underline{x + Z} \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(\underline{n + Z}) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash \textcolor{green}{x + Z} \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(\textcolor{green}{n + Z}) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ & \{x \mapsto n\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto \underline{x}, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(\underline{n + Z}) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 S(\underline{n}) =^? (n + n) + n & \{x \mapsto n\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 S(n) =^? (n + n) + n & \{x \mapsto n\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), \underline{1 \Vdash S(x) \mapsto x}\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 \underline{S(n)} =^? (n + n) + n & \{x \mapsto n\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 \underline{S(n)} =^? (n + n) + n & \{x \mapsto n\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash \underline{S(x)} \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 \underline{S(n)} =^? (n + n) + n & \{x \mapsto n\} \\ & \{x \mapsto n\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), \underline{1 \Vdash S(x) \mapsto x}\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 \underline{S(n)} =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_1 \underline{n} =^? (n + n) + n & \{x \mapsto n\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 S(n) =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_1 n =^? (n + n) + n & \{x \mapsto n\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 S(n) =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_1 n =^? \underline{(n + n) + n} & \{x \mapsto n\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash \underline{x + Z \mapsto x}, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 S(n) =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_1 n =^? \underline{(n + n) + n} & \{x \mapsto n\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash \underline{x + Z \mapsto x}, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$n + S(Z) =^? (n + n) + n \quad \text{Substitution}$$

$$\rightsquigarrow_0 S(n + Z) =^? (n + n) + n \quad \{x \mapsto n, y \mapsto Z\}$$

$$\rightsquigarrow_0 S(n) =^? (n + n) + n \quad \{x \mapsto n\}$$

$$\rightsquigarrow_1 n =^? \underline{(n + n) + n} \quad \{x \mapsto n\}$$

$$\{n \mapsto Z\}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto \textcolor{blue}{x}, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 S(n) =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_1 n =^? \underline{(n + n) + n} & \{x \mapsto n\} \\ \rightsquigarrow_0 Z =^? \textcolor{blue}{Z} + Z & \{n \mapsto Z\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 S(n) =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_1 n =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_0 Z =^? Z + Z & \{n \mapsto Z\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 S(n) =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_1 n =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_0 Z =^? \underline{Z + Z} & \{n \mapsto Z\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash \underline{x + Z} \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 S(n) =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_1 n =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_0 Z =^? \underline{Z + Z} & \{n \mapsto Z\} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash \underline{x + Z} \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 S(n) =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_1 n =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_0 Z =^? \underline{Z + Z} & \{n \mapsto Z\} \\ & \text{Id} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto \textcolor{blue}{x}, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 S(n) =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_1 n =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_0 Z =^? \underline{Z + Z} & \{n \mapsto Z\} \\ \rightsquigarrow_0 Z =^? \textcolor{blue}{Z} & \text{Id} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 S(n) =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_1 n =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_0 Z =^? Z + Z & \{n \mapsto Z\} \\ \rightsquigarrow_0 Z =^? Z & \text{Id} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 S(n) =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_1 n =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_0 Z =^? Z + Z & \{n \mapsto Z\} \\ \rightsquigarrow_0 \underline{Z =^? Z} & \text{Id} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 S(n) =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_1 n =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_0 Z =^? Z + Z & \{n \mapsto Z\} \\ \rightsquigarrow_0 Z =^? Z & \text{Id} \end{array}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$n + S(Z) =? (n + n) + n \quad \text{Substitution}$$

$$\rightsquigarrow_0 S(n + Z) =? (n + n) + n \quad \{x \mapsto n, y \mapsto Z\}$$

$$\rightsquigarrow_0 S(n) =? (n + n) + n \quad \{x \mapsto n\}$$

$$\rightsquigarrow_1 n =? (n + n) + n \quad \{x \mapsto n\}$$

$$\rightsquigarrow_0 Z =? Z + Z \quad \{n \mapsto Z\}$$

$$\rightsquigarrow_0 Z =? Z \quad \text{Id}$$

$$\rightsquigarrow_0 \text{TRUE}$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Quantitative Narrowing derivation:

$$\begin{array}{ll} n + S(Z) =^? (n + n) + n & \text{Substitution} \\ \rightsquigarrow_0 S(n + Z) =^? (n + n) + n & \{x \mapsto n, y \mapsto Z\} \\ \rightsquigarrow_0 S(n) =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_1 n =^? (n + n) + n & \{x \mapsto n\} \\ \rightsquigarrow_0 Z =^? Z + Z & \{n \mapsto Z\} \\ \rightsquigarrow_0 Z =^? Z & \text{Id} \\ \rightsquigarrow_0 \text{TRUE} & \end{array}$$

Computed approximate solution: $\{n \mapsto Z\}$ with degree 1

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Alternative derivation:

$$\begin{aligned} n + S(Z) &= ? (n + n) + n \\ \rightsquigarrow_0 S(n + Z) &= ? (n + n) + n && \text{(by } r_2\text{)} \\ \rightsquigarrow_0 S(n) &= ? \underline{(n + n) + n} && \text{(by } r_1\text{)} \\ \rightsquigarrow_0 S(S(y)) &= ? S(\underline{(S(y) + S(y)) + y}) && \text{(by } r_2\text{)} \\ \rightsquigarrow_0 S(S(Z)) &= ? S(\underline{S(Z) + S(Z)}) && \text{(by } r_1\text{)} \\ \rightsquigarrow_0 S(S(Z)) &= ? S(S(\underline{S(Z) + Z})) && \text{(by } r_2\text{)} \\ \rightsquigarrow_0 S(S(Z)) &= ? S(S(\underline{S(Z)})) && \text{(by } r_1\text{)} \\ \rightsquigarrow_1 S(S(Z)) &= ? S(S(Z)) && \text{(by } r_3\text{)} \\ \rightsquigarrow_0 \text{TRUE} & & & \end{aligned}$$

Computed approximate solution: $\{n \mapsto S(Z)\}$ with degree 1.

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Alternative derivation:

$$\begin{aligned} \underline{n + S(Z)} &= ? (n + n) + n \\ \rightsquigarrow_0 S(\underline{n + Z}) &= ? (n + n) + n && \text{(by } r_2\text{)} \\ \rightsquigarrow_0 S(n) &= ? \underline{(n + n)} + n && \text{(by } r_1\text{)} \\ \rightsquigarrow_0 S(S(y)) &= ? \underline{S(S(y) + y)} + S(y) && \text{(by } r_2\text{)} \\ \rightsquigarrow_1 S(S(y)) &= ? (S(y) + y) + \underline{S(y)} && \text{(by } r_3\text{)} \\ \rightsquigarrow_1 S(S(y)) &= ? (\underline{S(y)} + y) + y && \text{(by } r_3\text{)} \\ \rightsquigarrow_1 S(S(y)) &= ? (\underline{y} + y) + y && \text{(by } r_3\text{)} \\ \rightsquigarrow_0 S(S(S(y'))) &= ? S(\underline{S(y') + y'}) + S(y') && \text{(by } r_2\text{)} \\ \rightsquigarrow_0 S(S(S(Z))) &= ? \underline{S(S(Z)) + S(Z)} && \text{(by } r_1\text{)} \\ \rightsquigarrow_0 S(S(S(Z))) &= ? S(\underline{S(S(Z)) + Z}) && \text{(by } r_1\text{)} \\ \rightsquigarrow_0 \underline{S(S(S(Z)))} &= ? S(S(S(Z))) && \text{(by } r_1\text{)} \\ \rightsquigarrow_0 \text{TRUE} & & & \end{aligned}$$

Computed approximate solution: $\{n \mapsto S(S(Z))\}$ with degree 3.

Calculus BQNARROW for basic quantitative narrowing

- BQNARROW: Rule-based calculus for quantitative narrowing
- Given a quantitative unification problem (equation to be solved), construct an initial configuration
- Apply rules until a terminal configuration is reached
- Failure or solution can be read off from terminal configuration
- Configurations: **F** (failure) or $\langle e; C; \sigma; \delta \rangle$, where
 - e : equation (or TRUE)
 - C : set of constraints
 - σ : substitution computed so far
 - δ : current degree of approximation
- *Basic narrowing*: Variables of the problem are only instantiated at the end.
 - No instantiation of variables introduced by narrowing substitutions
 - Removes some sources of non-termination.

BQNARROW rules

LP: Lazy Paramodulation

$$\langle e[t]_p; C; \sigma; \delta \rangle \implies_{\partial_p(e)(\varepsilon)} \langle e[r]_p; \{l\sigma = t\sigma\} \cup C; \sigma; \delta \otimes \partial_p(e)(\varepsilon) \rangle,$$

where $e \neq \text{TRUE}$, p is a non-variable position of e , and $\varepsilon \Vdash l \mapsto r$ is a fresh variant of a rule in R .

SU: Syntactic Unification

$$\langle e; C; \sigma; \delta \rangle \implies_{\kappa} \langle e; \emptyset; \sigma\rho; \delta \rangle,$$

where $C \neq \emptyset$ and ρ is a most general syntactic unifier of C .

Cla: Clash

$$\langle e; C; \sigma; \delta \rangle \implies_{\kappa} \mathbf{F}, \quad \text{if } C \text{ is not unifiable.}$$

Con: Constrain

$$\langle e; C; \sigma; \delta \rangle \implies_{\kappa} \langle \text{TRUE}; C \cup \{e\sigma\}; \sigma; \delta \rangle, \quad \text{if } e \neq \text{TRUE}.$$

Example

Find an approximate solution $n \in \mathbb{N}$ for the equation $n + 1 = 3n$.

QTRS: $R = \{0 \Vdash x + Z \mapsto x, 0 \Vdash x + S(y) \mapsto S(x + y), 1 \Vdash S(x) \mapsto x\}$

Derivation in BQNARROW:

$$\begin{aligned}
 & \langle n + S(Z) = ? (n + n) + n; \emptyset; \text{Id}; 0 \rangle \\
 \xrightarrow{LP_0} & \langle S(x + y) = ? (n + n) + n; \{x + S(y) = n + S(Z)\}; \text{Id}; 0 \rangle \\
 \xrightarrow{SU_0} & \langle S(x + y) = ? (n + n) + n; \emptyset; \{x, n \mapsto x_1; y \mapsto Z\}; 0 \rangle \\
 \xrightarrow{LP_0} & \langle S(x_2) = ? (n + n) + n; \{x_2 + Z = x_1 + Z\}; \{x, n \mapsto x_1; y \mapsto Z\}; 0 \rangle \\
 \xrightarrow{LP_0} & \langle S(x_2) = ? x_3 + n; \{x_2 + Z = x_1 + Z, x_3 + Z = x_1 + x_1\}; \{x, n \mapsto x_1; y \mapsto Z\}; 0 \rangle \\
 \xrightarrow{SU_0} & \langle S(x_2) = ? x_3 + n; \emptyset; \{x, x_1, x_2, x_3, y, n \mapsto Z\}; 0 \rangle \\
 \xrightarrow{LP_1} & \langle x_4 = ? x_3 + n; \{x_4 = Z\}; \{x, x_1, x_2, x_3, y, n \mapsto Z\}; 1 \rangle \\
 \xrightarrow{LP_0} & \langle x_4 = ? x_5; \{x_4 = x_2, x_5 + Z = x_3 + Z\}; \{x, x_1, x_2, x_3, y, n \mapsto Z\}; 1 \rangle \\
 \xrightarrow{Con_0} & \langle \text{TRUE}; \{x_4 = x_2, x_5 + Z = x_3 + n, x_4 = x_5\}; \{x, x_1, x_2, x_3, y, n \mapsto Z\}; 1 \rangle \\
 \xrightarrow{SU_0} & \langle \text{TRUE}; \emptyset; \{x, x_1, x_2, x_3, x_4, x_5, y, n \mapsto Z\}; 1 \rangle
 \end{aligned}$$

Computed approximate solution: $\{n \mapsto Z\}$ with degree 1

Results

Theorem (Soundness of BQNARROW)

If $t =? s; C; \sigma; \delta \implies_{\varepsilon}^+ \text{TRUE}; \emptyset; \sigma'; \delta'$ is a derivation using the rules from BQNARROW, then $\varepsilon \Vdash t\sigma' =_R s\sigma'$.

Theorem (Weak completeness of BQNARROW)

Suppose that Ω is a Lawverean quantale whose order \precsim is total. Let $t =? s$ be a linear problem, and let R be a confluent, right-ground (Ω, Φ) -TRS. If $\varepsilon \Vdash t\tau =_R s\tau$, then BQNARROW admits a derivation $t =? s; \emptyset; \text{Id}; \kappa \implies^* \text{TRUE}; \emptyset; \sigma; \delta$ such that $\delta \succsim \varepsilon$.

Results

Theorem (Soundness of BQNARROW)

If $t =? s; C; \sigma; \delta \implies_{\varepsilon}^+ \text{TRUE}; \emptyset; \sigma'; \delta'$ is a derivation using the rules from BQNARROW, then $\varepsilon \Vdash t\sigma' =_R s\sigma'$.

Theorem (Weak completeness of BQNARROW)

Suppose that Ω is a Lawverean quantale whose order \precsim is total. Let $t =? s$ be a linear problem, and let R be a confluent, right-ground (Ω, Φ) -TRS. If $\varepsilon \Vdash t\tau =_R s\tau$, then BQNARROW admits a derivation $t =? s; \emptyset; \text{Id}; \kappa \implies^* \text{TRUE}; \emptyset; \sigma; \delta$ such that $\delta \succsim \varepsilon$.

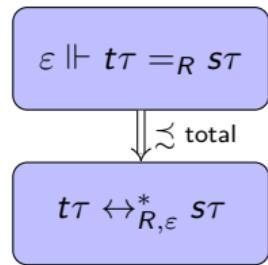
Remark

- Termination cannot be granted!
- Weak completeness: We do not necessarily compute the given τ , but some σ which solves the problem with a degree that is at least as good.
- Substantial improvement over previous results on quantitative unification (Ehling & Kutsia 2024).

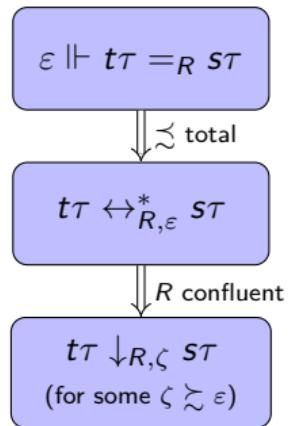
Steps of the completeness proof

$$\varepsilon \Vdash t\tau =_R s\tau$$

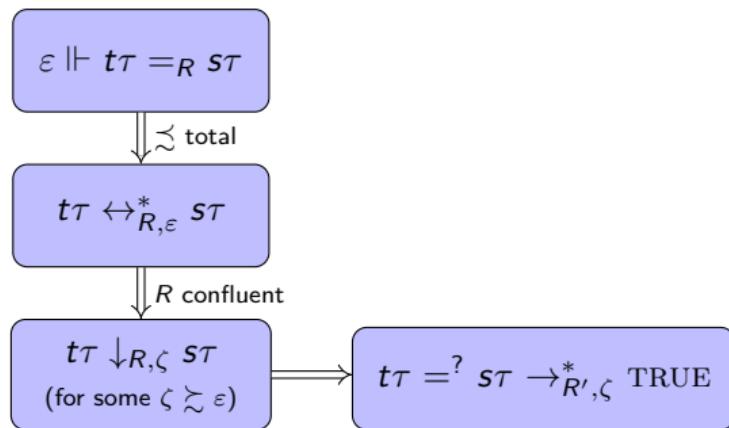
Steps of the completeness proof



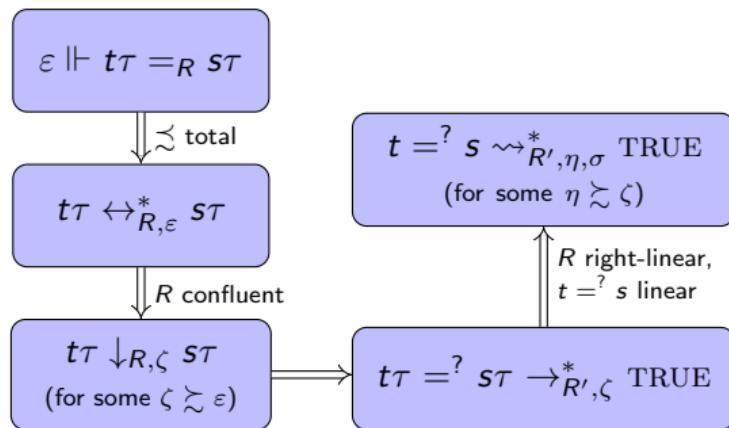
Steps of the completeness proof



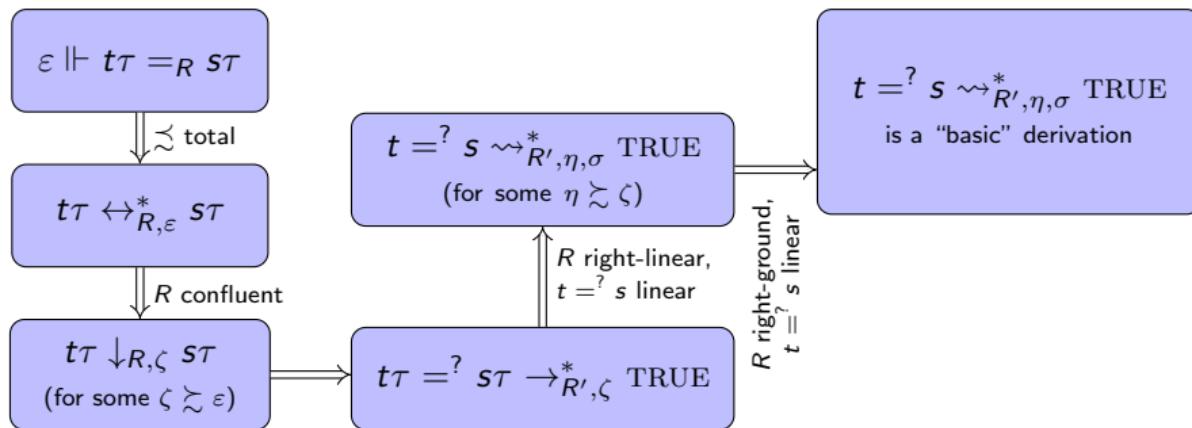
Steps of the completeness proof



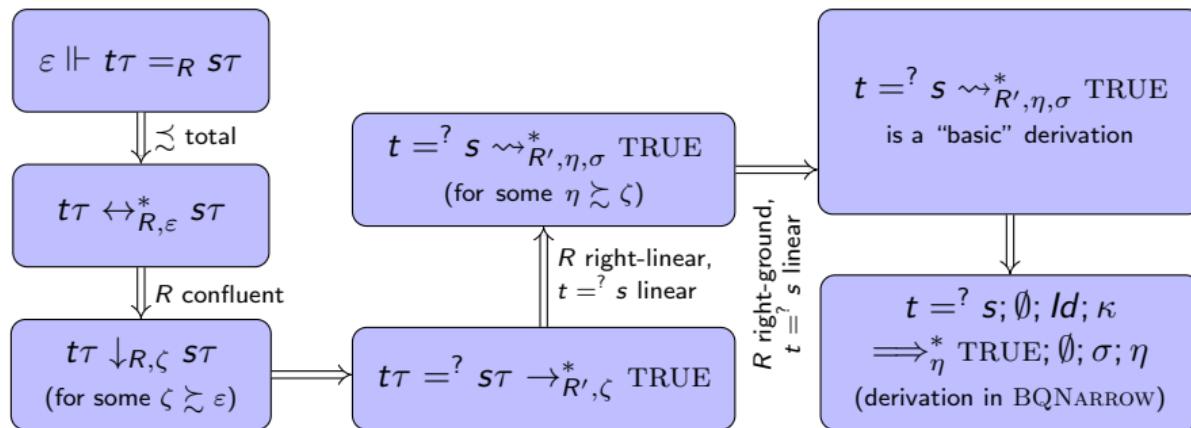
Steps of the completeness proof



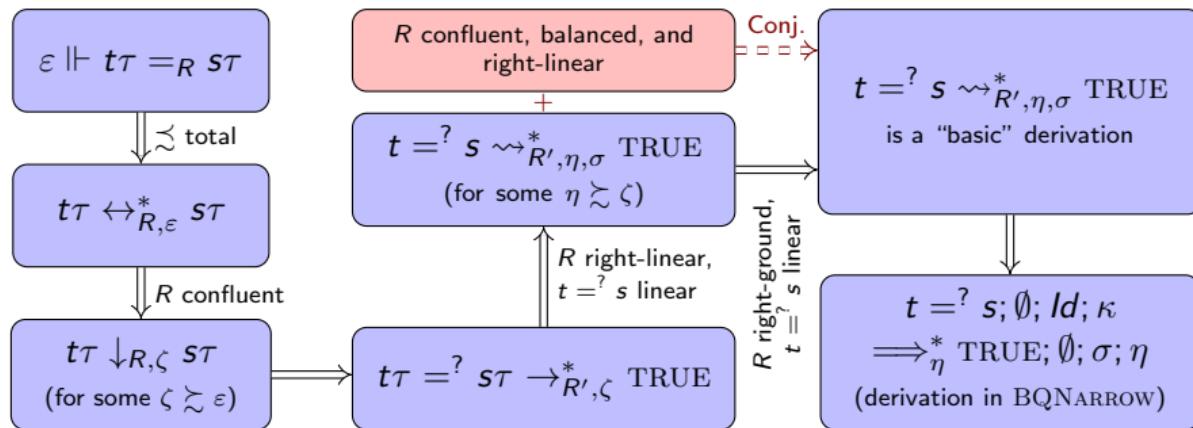
Steps of the completeness proof



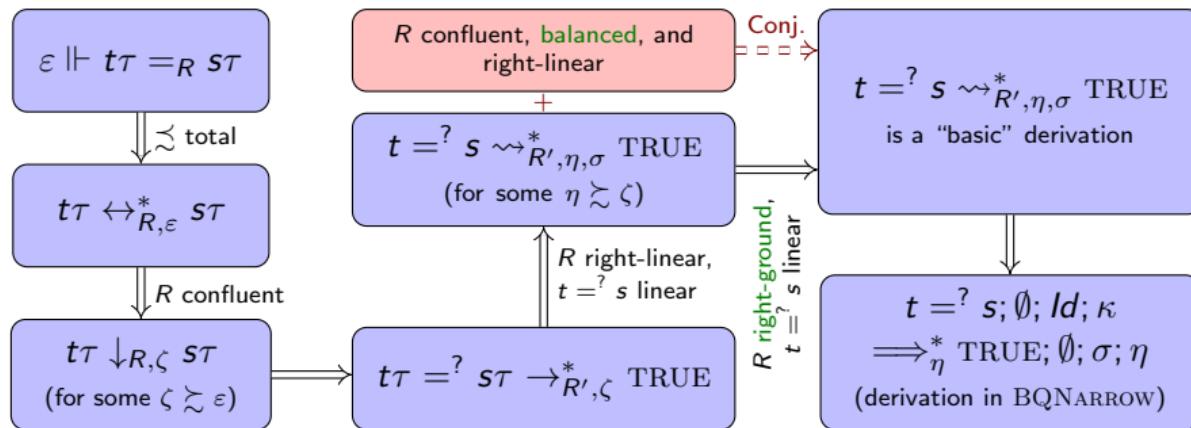
Steps of the completeness proof



Steps of the completeness proof



Steps of the completeness proof



Conclusion and future work

Conclusion

- Quantitative equational theories (Gavazzo & Di Florio 2023) cover various approaches of reasoning with quantitative information.
- Transferred narrowing to the quantitative setting.
- Established a rule-based narrowing calculus for quantitative unification and proved its soundness and (weak) completeness.
- Improved on previous results for quantitative unification.

Conclusion and future work

Conclusion

- Quantitative equational theories (Gavazzo & Di Florio 2023) cover various approaches of reasoning with quantitative information.
- Transferred narrowing to the quantitative setting.
- Established a rule-based narrowing calculus for quantitative unification and proved its soundness and (weak) completeness.
- Improved on previous results for quantitative unification.

Future work

- Under which conditions can we guarantee termination?
- Stronger results might be possible if we restrict to certain types of quantales: totally ordered, idempotent, divisible, ...
- Investigate other classic (equational) problems in the quantitative setting: matching, anti-unification, resolution, ...

References

- Ehling, Georg, and Temur Kutsia (2024). "Solving Quantitative Equations". In: *Automated Reasoning - 12th International Joint Conference, IJCAR 2024, Nancy, France, July 3-6, 2024, Proceedings, Part II*. Ed. by Christoph Benzmüller, Marijn J. H. Heule, and Renate A. Schmidt. Vol. 14740. Lecture Notes in Computer Science. Springer, pp. 381–400.
- Gavazzo, Francesco, and Cecilia Di Florio (2023). "Elements of Quantitative Rewriting". In: *Proc. ACM Program. Lang. 7.POPL*, pp. 1832–1863.
- Hullot, Jean-Marie (1980). "Canonical Forms and Unification". In: *5th Conference on Automated Deduction, Les Arcs, France, July 8-11, 1980, Proceedings*. Ed. by Wolfgang Bibel, and Robert A. Kowalski. Vol. 87. Lecture Notes in Computer Science. Springer, pp. 318–334.
- Mardare, Radu, Prakash Panangaden, and Gordon David Plotkin (2016). "Quantitative Algebraic Reasoning". In: *Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science*. LICS '16. New York, NY, USA: Association for Computing Machinery, pp. 700–709.
- Middeldorp, Aart, and Erik Hamoen (1994). "Completeness Results for Basic Narrowing". In: *Appl. Algebra Eng. Commun. Comput.* 5, pp. 213–253.