PVS Day 2025

Workshop on the Prototype Verification System Collocated with NFM 2025

The Algebra Library and Applications of Quaternions

Thaynara Arielly de Lima (UF Goiás) Bruno Berto de Oliveira Ribeiro (Universidade de Brasília - UnB) Andréia Borges Avelar(UnB), André Luiz Galdino (UF Catalão), and **Mauricio Ayala-Rincón** (UnB)

College of William & Mary, Computer Science Department - Williamsburg VA, June 10th, 2025

0/59

3

・ ロ ト ・ 何 ト ・ 三 ト ・ 三 ト - - -

Joint Work With

Bruno Berto de Oliveira Ribeiro (UnB)

André Luiz Galdino (UFCat)

Thaynara Arielly de Lima (UFG)

Andréia Borges Avelar (UnB)

2

1 Ring theory - An Overview

2 Euclidean Domains and Algorithms

- Correctness of the Abstract Euclidean Algorithm
- Correctness of Euclidean Algorithms on \mathbb{Z} and $\mathbb{Z}[i]$.

3 Quaternions

- General Theory of Quaternions
- Hamilton's Quaternions
- Lagrange's four-square Theorem

Conclusions

一日、

0/59

Motivation

- Ring theory has a wide range of applications in several fields of knowledge:
 - combinatorics, algebraic cryptography, and coding theory apply finite (commutative) rings [1];
 - ring theory forms the basis for algebraic geometry, which has applications in engineering, statistics, biological modeling, and computer algebra [8].
 - A complete formalization of ring theory would make possible the formal verification of elaborate theories involving rings in their scope.
- Formalizing rings will enrich the mathematical libraries of PVS:

https://github.com/nasa/pvslib/tree/master/algebra

Figure: Hierarchy of the sub-theories for the three isomorphism theorems for rings (Taken from [2])

シへへ

<ロト <回ト < 三ト < 三ト : 三</p>

Ring theory - An Overview

Figure: Hierarchy of the sub-theories related with principal, prime and maximal ideals (Taken from [2])

Figure: Hierarchy of the sub-theories related to the Chinese Remainder Theorem (Taken from [2])

か へ (~ 4/59

[2] de Lima, Galdino, Avelar, Ayala-Rincón
 Formalization of Ring Theory in PVS: Isomorphism Theorems, Principal,
 Prime and Maximal Ideals, Chinese Remainder Theorem
 Journal of Automated Reasoning, 2021

https://doi.org/10.1007/s10817-021-09593-0

- Formalization of the general algebraic-theoretical version of the Chinese remainder theorem (CRT) for the theory of rings, proved as a consequence of the first isomorphism theorem.
- The number-theoretical version of CRT for the structure of integers is obtained as a consequence.

Ring theory - An Overview

2 Euclidean Domains and Algorithms

- Correctness of the Abstract Euclidean Algorithm
- Correctness of Euclidean Algorithms on \mathbb{Z} and $\mathbb{Z}[i]$.

3 Quaternions

- General Theory of Quaternions
- Hamilton's Quaternions
- Lagrange's four-square Theorem

Conclusions

通 ト イヨ ト イヨト

Euclidean Domains and Algorithms

1 Ring theory - An Overview

2 Euclidean Domains and Algorithms

- Correctness of the Abstract Euclidean Algorithm
- Correctness of Euclidean Algorithms on \mathbb{Z} and $\mathbb{Z}[i]$.

3 Quaternions

- General Theory of Quaternions
- Hamilton's Quaternions
- Lagrange's four-square Theorem

Conclusions

伺 ト イヨト イヨト

A Euclidean ring is a commutative ring R equipped with a norm φ over $R \setminus \{zero\}$, where an abstract version of the well-known Euclid's division lemma holds. Euclidean rings and domains are specified in the subtheories euclidean_ring_def \bigcirc and euclidean_domain_def \bigcirc .

```
euclidean_ring?(R): bool = commutative_ring?(R) AND
EXISTS (phi: [(R - {zero}) -> nat]):
FORALL(a,b: (R)):
((a*b /= zero IMPLIES phi(a) <= phi(a*b)) AND
(b /= zero IMPLIES
EXISTS(q,r:(R)):
(a = q*b+r AND (r = zero OR (r /= zero AND phi(r) < phi(b))))))
euclidean_domain?(R): bool = euclidean_ring?(R) AND
integral_domain_w_one?(R)
```

7/59

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

The theory Euclidean_ring_def \mathbf{C}^{\bullet} includes two additional definitions to allow abstraction of acceptable Euclidean norms, ϕ , and associated functions, f_{ϕ} , fulfilling the properties of Euclidean rings.

```
Euclidean_pair?(R : (Euclidean_ring?), phi: [(R - {zero}) -> nat]) : bool =
    FORALL(a,b: (R)): ((a*b /= zero IMPLIES phi(a) <= phi(a*b)) AND
                         (b /= zero IMPLIES
                           EXISTS(q,r:(R)): (a = q*b+r AND
                               (r = zero OR (r /= zero AND phi(r) < phi(b)))))</pre>
Euclidean_f_phi?(R : (Euclidean_ring?),
                  phi : [(R - {zero}) -> nat] | Euclidean_pair?(R,phi))
                 (f_{phi} : [(R), (R - {zero}) \rightarrow [(R), (R)]]) : bool =
                  FORALL (a : (R), b : (R - \{zero\})):
                   IF a = zero THEN f_phi(a,b) = (zero, zero)
                   ELSE LET div = f_phi(a,b)<sup>1</sup>, rem = f_phi(a,b)<sup>2</sup> IN
                      a = div * b + rem AND
                      (rem = zero OR (rem /= zero AND phi(rem) < phi(b)))</pre>
                   ENDIF
```

8/59

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ つく?

The relation Euclidean_pair?(R, ϕ) \square holds whenever ϕ is a Euclidean norm over R.

The curried relation Euclidean_f_phi? $(R,\phi)(f_{\phi})$ is holds, whenever Euclidean_pair? (R,ϕ) holds, and

 $f_\phi \ : \ R \times R \setminus \{zero\} \to R \times R$

is such that for all pair in its domain, $f_{\phi}(a, b)$ gives a pair of elements, say (div, rem) satisfying the constraints of Euclidean rings regarding the norm ϕ :

if
$$a \neq zero, a = div * b + rem$$
 and, if $rem \neq zero, \phi(rem) < \phi(b)$

These definitions are correct since the existence of such a ϕ and f_{ϕ} is guaranteed by the fact that R is a Euclidean ring.

Also, notice that the decrement of the norm $(\phi(rem) < \phi(b))$ is the key to building an abstract Euclidean terminating procedure.

9/59

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

Using the previous two relations, a general abstract recursive Euclidean gcd algorithm is specified in the sub-theory ring_euclidean_algorithm \square as the curried definition Euclidean_gcd_algorithm \square .

```
Euclidean_gcd_algorithm(
        R : (Euclidean_domain?[T,+,*,zero.one]).
        (phi: [(R - {zero}) -> nat] | Euclidean_pair?(R,phi)),
        (f_{phi}: [(R), (R - {zero}) \rightarrow [(R), (R)]] |
                                        Euclidean_f_phi?(R,phi)(f_phi)))
        (a: (R), b: (R - {zero})) : RECURSIVE (R - {zero}) =
      a = zero THEN b
  IF
  ELSIF phi(a) >= phi(b) THEN
      LET rem = (f_phi(a,b))^2 IN
        IF rem = zero THEN b
        ELSE Euclidean_gcd_algorithm(R,phi,f_phi)(b,rem)
        ENDIF
  ELSE
        Euclidean_gcd_algorithm(R,phi,f_phi)(b,a)
  ENDIF
MEASURE lex2(phi(b), IF a = zero THEN 0 ELSE phi(a) ENDIF)
```

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

The termination of the algorithm is guaranteed manually proving that two proof obligations \mathcal{C} (termination Type Correctness Conditions - TCC) generated by PVS hold. For instance:

It uses the lexicographical MEASURE provided in the specification. The measure decreases after each possible recursive call.

11/59

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ つく?

The Euclid_theorem \square establishes the correctness of each recursive step regarding the abstract definition of gcd \square . It states that given adequate ϕ and f_{ϕ} , the gcd of a pair (a, b) is equal to the gcd of the pair (rem, b), where rem is computed by f_{ϕ} . Notice that since Euclidean rings allow a variety of Euclidean norms and associated functions (e.g., [7], [6]), gcd is specified as a relation.

```
gcd?(R)(X: {X | NOT empty?(X) AND subset?(X,R)}, d:(R - {zero})): bool =
  (FORALL a: member(a, X) IMPLIES divides?(R)(d,a)) AND
      (FORALL (c:(R - {zero})):
         (FORALL a: member(a, X) IMPLIES divides?(R)(c,a)) IMPLIES
  divides?(R)(c,d))
```

돌 ∽ < (~ 12/59

イロト 不得 トイヨト イヨト

Finally, the theorem Euclidean_gcd_alg_correctness \checkmark formalizes the correctness of the abstract Euclidean algorithm. The proof is by induction. For an input pair (a, b), in the inductive step of the proof, when $\phi(b) > \phi(a)$ and the recursive call swaps the arguments the lexicographic measure decreases. Otherwise, when the recursive call is Euclidean_gcd_algorithm $(R, \phi, f_{\phi})(b, rem)$ the measure decreases and by

application of Euclid_theorem, one concludes.

13/59

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ つく?

Ring theory - An Overview

2 Euclidean Domains and Algorithms

- Correctness of the Abstract Euclidean Algorithm
- Correctness of Euclidean Algorithms on \mathbb{Z} and $\mathbb{Z}[i]$.

3 Quaternions

- General Theory of Quaternions
- Hamilton's Quaternions
- Lagrange's four-square Theorem

Conclusions

13/59

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Corollary Euclidean_gcd_alg_correctness_in_Z \square gives the Euclidean algorithm correctness for the Euclidean ring of integers, \mathbb{Z} . It states that the parameterized abstract algorithm, Euclidean_gcd_algorithm[int,+,*,0,1] satisfies the relation gcd?[int,+,*,0], for any $i, j \in \mathbb{Z}, j \neq 0$.

It follows from the correctness of the abstract Euclidean algorithm and requires proving that $\phi_{\mathbb{Z}}$ and $f_{\phi_{\mathbb{Z}}}$ fulfill the definition of Euclidean rings. The latter is formalized as lemma phi_Z_and_f_phi_Z_ok \square .

14/59

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

Correctness of the Euclidean algorithm for the Euclidean ring $\mathbb{Z}[i]$ of Gaussian integers.

The Euclidean norm of a Gaussian integer $x = (\operatorname{Re}(x) + i \operatorname{Im}(x)) \in \mathbb{Z}[i], \phi_{\mathbb{Z}[i]}(x)$, is selected as the natural given by the multiplication of x by its conjugate $(\bar{x} = \operatorname{conjugate}(x) = \operatorname{Re}(x) - i \operatorname{Im}(x))$: $\operatorname{Re}(x)^2 + \operatorname{Im}(x)^2$.

The auxiliary function div_rem_appx \checkmark is used to specify the associated function $f_{\phi_{\mathbb{Z}[i]}}$ for the Euclidean ring $\mathbb{Z}[i]$. For a pair of integers $(a, b), b \neq 0$, div_rem_appx computes the pair of integers (q, r) such that $a = q \ b + r$, and $|r| \leq |b|/2$; thus, $q \ b$ is the integer closest to a. Lemma div_rev_appx_correctness \checkmark proves the equality $a = q \ b + r$.

```
div_rem_appx(a: int, (b: int | b /= 0)) : [int, int] =
  LET r = rem(abs(b))(a),
    q = IF b > 0 THEN ndiv(a,b) ELSE -ndiv(a,-b) ENDIF IN
  IF r <= abs(b)/2 THEN (q,r)
  ELSE IF b > 0 THEN (q+1, r - abs(b))
        ELSE (q-1, r - abs(b))
        ENDIF
  ENDIF

div_rev_appx_correctness : LEMMA
  FORALL (a: int, (b: int | b /= 0)) :
        abs(div_rem_appx(a,b)^2) <= abs(b)/2 AND
        a = b * div_rem_appx(a,b)^1 + div_rem_appx(a,b)^2</pre>
```

Construction of $f_{\phi_{\mathbb{Z}[i]}}$ \mathbf{C} : For y, a Gaussian integer and x, a positive integer, let $\operatorname{Re}(y) = q_1x + r_1$ and $\operatorname{Im}(y) = q_2x + r_2$, where (q_1, r_1) and (q_2, r_2) are computed by div_rem_appx($\operatorname{Re}(y), x$) and div_rem_appx($\operatorname{Im}(y), x$)), respectively. Let $q = q_1 + iq_2$ and $r = r_1 + ir_2$, then y = qx + r. Also, notice that if $r \neq 0$ then $\phi_{\mathbb{Z}[i]}(r) \le \phi_{\mathbb{Z}[i]}(x)$ since $r_1^2 + r_2^2 \le x^2$. For the case in which x is a non zero Gaussian integer, $\phi_{\mathbb{Z}[i]}(x) > 0$ holds. Then, div_rem_appx($y \bar{x}, x \bar{x}$) computes $q, r' \in \mathbb{Z}[i]$ such that $y \bar{x} = q(x \bar{x}) + r'$, and r' = 0 or $\phi_{\mathbb{Z}[i]}(r') < \phi_{\mathbb{Z}[i]}(x \bar{x})$. Finally, selecting r = y - q x (y = q x + r) and $r' = r \bar{x}$: If $r \neq 0$, since $\phi_{\mathbb{Z}[i]}(r \bar{x}) < \phi_{\mathbb{Z}[i]}(x \bar{x})$, by lemma phi_Zi_is_multiplicative \mathbf{C} , we conclude that $\phi_{\mathbb{Z}[i]}(r) < \phi_{\mathbb{Z}[i]}(x)$.

17/59

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

Corollary Euclidean_gcd_alg_ in_Zi \mathbf{C} gives the correctness of the Euclidean algorithm for the Euclidean ring $\mathbb{Z}[i]$.

This is consequence of the correctness of the abstract Euclidean algorithm and lemma phi_Zi_and_f_phi_Zi_ok \square that states that $\phi_{\mathbb{Z}[i]}$ and $f_{\phi_{\mathbb{Z}[i]}}$ are adequate for $\mathbb{Z}[i]$: Euclidean_f_phi?[complex, +, *, 0]($\mathbb{Z}[i], \phi_{\mathbb{Z}[i]})(f_{\phi_{\mathbb{Z}[i]}})$.

```
phi_Zi_and_f_phi_Zi_ok: LEMMA
Euclidean_f_phi?[complex,+,*,0](Zi,phi_Zi)(f_phi_Zi)
Euclidean_gcd_alg_in_Zi: COROLLARY
FORALL(x: (Zi), (y: (Zi) | y /= 0) ) :
    gcd?[complex,+,*,0](Zi)({z :(Zi) | z = x OR z = y},
    Euclidean_gcd_algorithm[complex,+,*,0,1](Zi, phi_Zi,f_phi_Zi)(x,y))
```

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ - のなべ

EPiC Computing

[4] Ayala-Rincón, de Lima, Avelar, Galdino
 Formalization of Algebraic Theorems in PVS
 Proceedings of 24th Int. Conf. on Logic for Programming, Artificial
 Intelligence and Reasoning, LPAR 2023

https://doi.org/10.29007/7jbv

イロト イボト イヨト イヨト

Ring theory - An Overview

2 Euclidean Domains and Algorithms

- Correctness of the Abstract Euclidean Algorithm
- Correctness of Euclidean Algorithms on \mathbb{Z} and $\mathbb{Z}[i]$.

3 Quaternions

- General Theory of Quaternions
- Hamilton's Quaternions
- Lagrange's four-square Theorem

4 Conclusions

通 ト イ ヨ ト イ ヨ ト

Complex numbers and bi-dimensional real space

20/59

For about ten years, Sir William Rowan Hamilton tried to model three-dimensional space with a structure like "complex numbers", equipped with and closed under addition and multiplication.

Figure: Sir William Rowan Hamilton, picture taken from [9]

イロト イボト イヨト イヨト

On October 16, 1843, Hamilton realized he needed a four-dimensional structure to model the three-dimensional real space.

It provided some peculiar/special results...

• The advent of an algebraic structure at the intersection of many mathematical topics such as non-commutative ring theory, number theory, geometric topology, etc.

く 同 ト く ヨ ト く ヨ ト 一

"The most famous act of mathematical vandalism"

Figure: Sand sculpture by Daniel Doyle, picture taken from [9]

Figure: Broom bridge plaque in Dublin, picture taken from [12]

- 4 回 ト 4 三 ト

Hamilton's Quaternions

The structure $\langle \mathbb{H}, +, \cdot, one_q, i, j, k \rangle$, where:

•
$$\mathbb{H} = \{q_0 one_q + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k} \mid q_\ell \in \mathbb{R}, \text{ for } 0 \le \ell \le 3\};$$

•
$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{i} \cdot \mathbf{j} \cdot \mathbf{k} = -1 + 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k} = -one_q;$$

For p and $q \in \mathbb{H}$:

•
$$\mathbf{p} + \mathbf{q} = (p_0 + q_0) + (p_1 + q_1)\mathbf{i} + (p_2 + q_2)\mathbf{j} + (p_3 + q_3)\mathbf{k}$$

• $\mathbf{p} \cdot \mathbf{q} = \begin{pmatrix} (p_0q_0 - p_1q_1 - p_2q_2 - p_3q_3) \\ + (p_0q_1 + p_1q_0 + p_2q_3 - p_3q_2)\mathbf{i} \\ + (p_0q_2 - p_1q_3 + p_2q_0 + p_3q_1)\mathbf{j} \\ + (p_0q_3 + p_1q_2 - p_2q_1 + p_3q_0)\mathbf{k} \end{pmatrix}$

э

イロト イヨト イヨト イヨト

Hamilton's Quaternions

Hamilton's Quaternions can be seen as a four dimensional vector space over the field of real numbers.

Considering... • $\mathbb{H}^0 = \{\mathbf{q} \mid q_0 = 0\} \subset \mathbb{H};$ $\mathbb{H}^0 \cong \mathbb{R}^3$

Conjugate and norm

Define:

• The conjugate of a quaternion q as

$$\mathbf{\bar{q}} = q_0 - \underline{q_1 \mathbf{i} - q_2 \mathbf{j} - q_3 \mathbf{k}}$$

= $q_0 - \mathbf{q}$

where q is the *pure part* of q

• The *norm* of
$${f q}$$
 is given as $|{f q}|=\sqrt{q_0^2+q_1^2+q_2^2+q_3^2}$

э

A special function

Let ${\bf q}$ be a quaternion. Consider the function

$$\begin{array}{rcccc} T_q: & \mathbb{H}^0 & \to & \mathbb{H} \\ & \mathbf{v} & \mapsto & \mathbf{q} \cdot \mathbf{v} \cdot \bar{\mathbf{q}} \end{array}$$

One can prove that:

$$T_q: \mathbb{H}^0 \to \mathbb{H}^0$$
, or equivalently
 $T_q: \mathbb{R}^3 \to \mathbb{R}^3$

크

イロン イ団 とく ヨン イヨン

Some properties of T_q

• T_q is linear:

 $T_q(a\boldsymbol{v}+b\boldsymbol{u})=aT_q(\boldsymbol{v})+bT_q(\boldsymbol{u}), \text{ for all } a,b\in\mathbb{R} \text{ and } \boldsymbol{v},\boldsymbol{u}\in\mathbb{R}^3.$

• If $\mathbf{q} \in \mathbb{H}^1$ then T_q preserves the norm of \boldsymbol{v} :

$$|T_q(\boldsymbol{v})| = |\mathbf{q} \cdot \boldsymbol{v} \cdot \bar{\mathbf{q}}| = |\mathbf{q}| \cdot |\boldsymbol{v}| \cdot |\bar{\mathbf{q}}| = |\boldsymbol{v}|$$

• If $\mathbf{q} \in \mathbb{H}^1$ then $T_q(k\mathbf{q}) = k\mathbf{q}$, where $k \in \mathbb{R}$;

э

伺 ト イヨト イヨト

Completeness of rotation using Hamilton's quaternions

Consider va and vb linearly independent vectors from \mathbb{R}^3 such that |va| = |vb|. There exists a Hamilton's quaternion \mathbf{q} , such that

$$T_q(\boldsymbol{v}\boldsymbol{a}) = \boldsymbol{v}\boldsymbol{b}$$

and q is the axis of rotation that leads va into vb.

Benefits of rotating using Quaternions

Taken from [11]

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix} \begin{bmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{bmatrix} \begin{bmatrix} \cos(\gamma) & -\sin(\gamma) & 0 \\ \sin(\gamma) & \cos(\gamma) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2

イロン イ団 とく ヨン イヨン

Benefits of rotating using Quaternions - Avoiding Gimbal Lock

y axis
x axis = z axis
$$For \ \beta = \frac{\pi}{2}, R = \begin{bmatrix} 0 & 0 & 1 \\ \sin(\alpha + \gamma) & \cos(\alpha + \gamma) & 0 \\ -\cos(\alpha + \gamma) & \sin(\alpha + \gamma) & 0 \end{bmatrix}$$

Figure: Gimbal Lock: taken from [10]

Implementations of quaternions have been considered in the NASA Space Shuttle Program. E.g., D. M. Henderson's Design Note NO. 1.4-8-020 relates quaternion transformation to the twelve three-axis Euler transformation(s):

т	7	
L	a	~~~

XYZ	YXZ	ZXZ
XZY	YZX	ZYX
XYX	YXY	ZXZ
XZX	YZY	ZYZ

Applications

• Quaternions have been used in computer graphics, robotics, signal processing, bioinformatics, and orbital mechanics.

Tomb Raider (1996) is often cited as the first mass-market computer game to have used quaternions to achieve smooth 3D rotation.

Use Quaternions Math as Octave, Maple, Mathematica, Numpy, GeoGebra, etc

4 1 1 4 1 1 4

Ring theory - An Overview

2 Euclidean Domains and Algorithms

- Correctness of the Abstract Euclidean Algorithm
- Correctness of Euclidean Algorithms on \mathbb{Z} and $\mathbb{Z}[i]$.

3 Quaternions

- General Theory of Quaternions
- Hamilton's Quaternions
- Lagrange's four-square Theorem

Conclusions

伺 ト イヨト イヨト

The theory quaternions_def [T:Type+,+,*:[T,T->T],zero,one,a,b:T] uses an abstract type T, and assumes group [T,+,zero], and axioms:

```
conjugate(v) = (v`x, inv(v`y), inv(v`z), inv(v`t))
                            red_norm(v) = v*conjugate(v)
                            +(u,v):quat=(u`x+v`x, u`y+v`y, u`z+v`z, u`t+v`t);
                            *(c,v):quat=(c * v`x, c * v`y, c * v`z, c * v`t);
                            *: [quat.quat -> quat]; % quat multiplication
                            sqr_i
                                          :AXIOM i * i = a_q
i = (zero, one, zero, zero)
                            sqr_j
                                          :AXIOM j * j = b_q
j = (zero, zero, one, zero)
                            ij_is_k
                                          :AXIOM i * i = k
k = (zero, zero, zero, one)
                            ji_prod
                                          :AXIOM i * i = inv(k)
a_q = (a, zero, zero, zero)
                            sc_quat_assoc :AXIOM c*(u*v) = (c*u)*v
b_q = (b, zero, zero, zero)
                                          :AXIOM (c*u)*v = u*(c*v)
                            sc_comm
                                          :AXIOM c*(d*u) = (c*d)*u
                            sc_assoc
                            q_distr
                                          :AXIOM distributive?[quat](*, +)
                            a distrl
                                          :AXIOM (u + v) * w = u * w + v * w
                            q_assoc
                                          :AXIOM associative?[quat](*)
                            one_q_times
                                          :AXIOM one_q * u = u
                            times_one_q
                                          :AXIOM u * one_q = u
```

≣ •ી લ (~ 33/59

The PVS theory quaternions \car{C} assumes field[T,+,*,zero,one] and formalizes several basic properties.

```
basis_quat: LEMMA
FORALL (q: quat): q = q'x * one_q + q'y * i + q'z * j + q't * k
```

```
q_prod_charac: LEMMA FORALL (u,v:quat):
u * v = (u`x * v`x + u`y * v`y * a + u`z * v`z * b + u`t * v`t * inv(a) * b,
u`x * v`y + u`y * v`x + (inv(b)) * u`z * v`t + b* u`t * v`z,
u`x * v`z + u`z * v`x + a * u`y * v`t + inv(a) * u`t * v`y,
u`x * v`t + u`y * v`z + inv(u`z * v`y) + u`t * v`x )
```

```
quat_is_ring_w_one: LEMMA
ring_with_one?[quat,+,*,zero_q,one_q](fullset[quat])
```

The general function $T_q(v)$ T_q(q: quat)(v:(pure_quat)): (pure_quat) = q * v * conjugate(q) T_q_is_linear: LEMMA FORALL (c,d: T, q: quat, v,w: (pure_quat)): T_q(q)(c * v + d * w) = c * T_q(q)(v) + d * T_q(q)(w) T_q_red_norm_invariant: LEMMA FORALL (q: quat, v:(pure_quat)): red_norm(q) = one_q IMPLIES red_norm(T_q(q)(v)) = red_norm(v) T_q_invariant_red_norm: LEMMA FORALL (c: T, q: quat): red_norm(q) = one_q IMPLIES T_q(q)(c * pure_part(q)) = c * pure_part(q)

Characterization of Quaternions as Division Rings

quat_div_ring_char: LEMMA charac(fullset[T]) /= 2 IMPLIES ((FORALL (x,y:T): a*(x*x) + b*(y*y) /= one) IFF division_ring?[quat,+,*,zero_q,one_q](fullset[quat]))

35/59

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

Ring theory - An Overview

2 Euclidean Domains and Algorithms

- Correctness of the Abstract Euclidean Algorithm
- Correctness of Euclidean Algorithms on \mathbb{Z} and $\mathbb{Z}[i]$.

3 Quaternions

- General Theory of Quaternions
- Hamilton's Quaternions
- Lagrange's four-square Theorem

Conclusions

Formalization of Hamilton's Quaternion

Hamilton's quaternions \bigcirc are obtained by importing the quaternions theory using the field of reals as a parameter, and the real -1 for the parameters a and b:

IMPORTING quaternions[real,+,*,0,1,-1,-1]

く 同 ト く ヨ ト く ヨ ト 一

Rotation by Hamilton's Quaternions

```
Real_part(q: quat): real = q`x
Vect part(g: guat): Vect3 = (g`v, g`z, g`t)
r_angle(a,b:(nzpure_quat)):nnreal_le_pi =
  angle_between(Vect_part(a),Vect_part(b))
n_rot_axis(a:(pure_quat),b:(pure_quat)|
 lin_independent?(Vect_part(a), Vect_part(b))):Vect3 =
 normalize(cross(Vect_part(a), Vect_part(b)))
rot quat(a:(pure quat),b:(pure quat) |
 lin_independent?(Vect_part(a),Vect_part(b))):quat =
  LET rot_angl_halve : nnreal_le_pi = r_angle(a,b)/ 2,
       sin_ha = sin(rot_angl_halve),
       cos_ha = cos(rot_angl_halve),
       n = n_rot_axis(a,b)
  IN (cos_ha, sin_ha * n`x, sin_ha * n`y, sin_ha * n`z)
```


伺 ト イヨト イヨト

38/59

T_q_Real_charac: LEMMA FORALL (q: quat, a: (pure_quat)):				
<pre>Vect_part(T_q(q)(a)) =</pre>	<pre>(2 * (Vect_part(q) * Vect_part(a))) * Vect_part(q)</pre>	+		
<pre>(sq(q'x) - sq(norm(Vect_part(q)))) * Vect_part(a)</pre>		+		
	<pre>(2 * q'x) * cross(Vect_part(q), Vect_part(a))</pre>			

39/59

ъ.

Rotation by Hamilton's Quaternions

```
Quaternions Rotation: THEOREM
  FORALL (a:(pure_quat), b:(pure_quat) |
          norm(Vect_part(a)) = norm(Vect_part(b)) AND
          linearly_independent?(Vect_part(a), Vect_part(b))):
          LET q = rot_quat(a,b) IN
          b = T_q(q)(a)
Quaternions Rotation Deform: THEOREM
 FORALL (a:(pure_quat), b:(pure_quat) |
         linearly_independent?(Vect_part(a), Vect_part(b))):
 LET q =
 (sqrt(norm(Vect_part(b))/norm(Vect_part(a))))*
  rot_quat(a, norm(Vect_part(a))/norm(Vect_part(b))*b)
 IN b = T_q(q)(a)
```

Ring theory - An Overview

2 Euclidean Domains and Algorithms

- Correctness of the Abstract Euclidean Algorithm
- Correctness of Euclidean Algorithms on \mathbb{Z} and $\mathbb{Z}[i]$.

3 Quaternions

- General Theory of Quaternions
- Hamilton's Quaternions
- Lagrange's four-square Theorem

4 Conclusions

伺 ト イヨト イヨト

Lagrange's four-square theorem

Given a positive integer \boldsymbol{x} there are four non-negative integers $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$ such that

$$x = a^2 + b^2 + c^2 + d^2$$

Strategy:

 Prove that the product of the sum of four squares is also a sum of four squares (Lagrange's identity).

$$(a_0^2 + a_1^2 + a_2^2 + a_3^2) \cdot (b_0^2 + b_1^2 + b_2^2 + b_3^2) = (c_0^2 + c_1^2 + c_2^2 + c_3^2)$$

Prove the Lagrange's four-square theorem considering x as an odd prime number, since

$$2 = 1^2 + 1^2 + 0^2 + 0^2$$

周 ト イ ヨ ト イ ヨ ト

Lagrange's identity and Norm of Quaternions

Lagrange_identity: LEMMA FORALL (a0, a1, a2, a3, b0, b1, b2, b3: real): (a0² + a1² + a2² + a3²) * (b0² + b1² + b2² + b3²) = (a0*b0 - a1*b1 - a2*b2 - a3*b3)² + (a0*b1 + a1*b0 + a2*b3 - a3*b2)² + (a0*b2 - a1*b3 + a2*b0 + a3*b1)² + (a0*b3 + a1*b2 - a2*b1 + a3*b0)²

Let $\mathbf{x} = (a_0, a_1, a_2, a_3)$ and $\mathbf{y} = (b_0, b_1, b_2, b_3)$ be Hamilton's quaternions. Then,

 $N(\mathbf{x}) \cdot N(\mathbf{y}) = N(\mathbf{x} \cdot \mathbf{y})$

Special structure where a prime p is norm of some element


```
IMPORTING algebra@quaternions[rational,+,*,0,1,-1,-1]
Hurwitz_ring: set[quat] = {q: quat | EXISTS (x, y, z, t: int):
  (q`x = x/2 AND q`y = x/2 + y AND q`z = x/2 + z AND q`t = x/2 + t)}
Hurwitz_ring_is_ring_w_one: THEOREM
    ring_with_one?[quat,+,*,zero_q, one_q](Hurwitz_ring)
Hurwitz_red_norm_charac: LEMMA FORALL (q: Hurwitz_ring):
    red_norm(q) = (q`x^2 + q`y^2 + q`z^2 + q`t^2, 0, 0, 0)
Hurwitz_red_norm_is_posint: LEMMA FORALL (q: Hurwitz_ring):
    integer?((red_norm(q))`x) AND (red_norm(q))`x >= 0
```

Other properties of the Hurwitz Ring

A left-division algorithm holds for the Hurwitz Ring

Hurwitz_left_division: THEOREM FORALL (a: Hurwitz_ring, b: Hurwitz_ring | red_norm(b)`x > 0): EXISTS (c, d: Hurwitz_ring): a = c*b+d AND red_norm(d)`x < red_norm(b)`x</pre>


```
left_product_generator: LEMMA
FORALL (L: Hurwitz_left_ideal):
    EXISTS (u: (L)):
    FORALL (x: (L)): EXISTS (r: Hurwitz_ring): x = r*u
```

When $L \neq (0)$, the generator $u \in L$ is an element whose norm is minimal over the nonzero elements of L.

(日)

We want to guarantee the existence of a left-ideal L of H such that:

•
$$\mathbf{p} = (p, 0, 0, 0) \in L;$$

•
$$\mathbf{p} = \mathbf{r} \cdot \mathbf{u}$$
 for some $\mathbf{r} \in H$ and $\mathbf{u} \in L$

AND

Э.

イロト イヨト イヨト イヨト

May L be the Hurwitz ring?

$$H = \left\{ \left(\frac{x_0}{2}, \frac{x_0}{2} + x_1, \frac{x_0}{2} + x_2, \frac{x_0}{2} + x_3\right) | x_i \in \mathbb{Z} \right\}$$

• The Hurwitz ring is an ideal of itself;
•
$$(p, 0, 0, 0) = \left(\frac{2p}{2}, \frac{2p}{2} - p, \frac{2p}{2} - p, \frac{2p}{2} - p\right) \in H;$$

Since $H \neq (0)$, the generator $u \in H$ is an element whose norm is minimal over the nonzero elements of H.

$$N(\mathbf{q}) = \left(\frac{x_0}{2}\right)^2 + \left(\frac{x_0}{2} + x_1\right)^2 + \left(\frac{x_0}{2} + x_2\right)^2 + \left(\frac{x_0}{2} + x_3\right)^2 \text{ is minimal when}$$

$$x_0 = 1 \text{ and } x_1 = x_2 = x_3 = 0 \Rightarrow N(\mathbf{u}) = 1.$$

 $p^2 = N(\mathbf{p}) = N(\mathbf{r}) \cdot N(\mathbf{u})$, where $N(\mathbf{r}) > 1$ and $N(\mathbf{u}) > 1$ is not satisfied.

46/59

э

イロト イボト イヨト イヨト

May L be the Hurwitz ring?

H

$$H = \left\{ \left(\frac{x_0}{2}, \frac{x_0}{2} + x_1, \frac{x_0}{2} + x_2, \frac{x_0}{2} + x_3\right) | x_i \in \mathbb{Z} \right\}$$

• The Hurwitz ring is an ideal of itself;

•
$$(p,0,0,0) = \left(\frac{2p}{2}, \frac{2p}{2} - p, \frac{2p}{2} - p, \frac{2p}{2} - p\right) \in H;$$

Since $H \neq (0)$, the generator $u \in H$ is an element whose norm is minimal over the nonzero elements of H.

$$N(\mathbf{q}) = \left(\frac{x_0}{2}\right)^2 + \left(\frac{x_0}{2} + x_1\right)^2 + \left(\frac{x_0}{2} + x_2\right)^2 + \left(\frac{x_0}{2} + x_3\right)^2 \text{ is minimal when}$$

$$x_0 = 1 \text{ and } x_1 = x_2 = x_3 = 0 \Rightarrow N(\mathbf{u}) = 1.$$

 $p^2=N({f p})=N({f r})\cdot N({f u})$, where $N({f r})>1$ and $N({f u})>1$ is not satisfied.

46/59

< 回 > < 三 > < 三 >

May L be the Hurwitz ring?

H

$$H = \left\{ \left(\frac{x_0}{2}, \frac{x_0}{2} + x_1, \frac{x_0}{2} + x_2, \frac{x_0}{2} + x_3\right) | x_i \in \mathbb{Z} \right\}$$

• The Hurwitz ring is an ideal of itself;

•
$$(p,0,0,0) = \left(\frac{2p}{2}, \frac{2p}{2} - p, \frac{2p}{2} - p, \frac{2p}{2} - p\right) \in H;$$

Since $H \neq (0)$, the generator $u \in H$ is an element whose norm is minimal over the nonzero elements of H.

$$N(\mathbf{q}) = \left(\frac{x_0}{2}\right)^2 + \left(\frac{x_0}{2} + x_1\right)^2 + \left(\frac{x_0}{2} + x_2\right)^2 + \left(\frac{x_0}{2} + x_3\right)^2 \text{ is minimal when}$$

$$x_0 = 1 \text{ and } x_1 = x_2 = x_3 = 0 \Rightarrow N(\mathbf{u}) = 1.$$

 $p^2=N({\bf p})=N({\bf r})\cdot N({\bf u}),$ where $N({\bf r})>1$ and $N({\bf u})>1$ is not satisfied.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

May L be the Prime Hurwitz ideal V_p ?

$$\begin{array}{c} H \\ H \\ V_p = \left\{ \left(\frac{p \cdot x_0}{2}, p \cdot \left(\frac{x_0}{2} + x_1\right), p \cdot \left(\frac{x_0}{2} + x_2\right), p \cdot \left(\frac{x_0}{2} + x_3\right) \right) | x_i \in \mathbb{Z} \right\} \\ \bullet V_p \text{ is an ideal of the Hurwitz ring } H; \\ \bullet (p, 0, 0, 0) = \left(\frac{p \cdot 2}{2}, p \cdot \left(\frac{2}{2} - 1\right), p \cdot \left(\frac{2}{2} - 1\right), p \cdot \left(\frac{2}{2} - 1\right) \right) \in V_p; \end{array}$$

Since $V_p \neq (0)$, the generator $u \in V_p$ is an element whose norm is minimal over the nonzero elements of V_p .

$$N(\mathbf{q}) = p^2 \left[\left(\frac{x_0}{2}\right)^2 + \left(\frac{x_0}{2} + x_1\right)^2 + \left(\frac{x_0}{2} + x_2\right)^2 + \left(\frac{x_0}{2} + x_3\right)^2 \right] \text{ is minimal}$$

when $x_0 = 1$ and $x_1 = x_2 = x_3 = 0 \Rightarrow N(\mathbf{u}) = p^2$.

 $p^2 = N(\mathbf{p}) = N(\mathbf{r}) \cdot N(\mathbf{u})$, where $N(\mathbf{r}) > 1$ and $N(\mathbf{u}) > 1$ is not satisfied.

47/59

э

イロト イボト イヨト イヨト

May L be the Prime Hurwitz ideal V_p ?

$$\begin{array}{c} H \\ H \\ V_p = \left\{ \left(\frac{p \cdot x_0}{2}, p \cdot \left(\frac{x_0}{2} + x_1\right), p \cdot \left(\frac{x_0}{2} + x_2\right), p \cdot \left(\frac{x_0}{2} + x_3\right) \right) | x_i \in \mathbb{Z} \right\} \\ \bullet V_p \text{ is an ideal of the Hurwitz ring } H; \\ \bullet (p, 0, 0, 0) = \left(\frac{p \cdot 2}{2}, p \cdot \left(\frac{2}{2} - 1\right), p \cdot \left(\frac{2}{2} - 1\right), p \cdot \left(\frac{2}{2} - 1\right) \right) \in V_p; \end{array}$$

Since $V_p \neq (0)$, the generator $u \in V_p$ is an element whose norm is minimal over the nonzero elements of V_p .

$$N(\mathbf{q}) = p^2 \left[\left(\frac{x_0}{2}\right)^2 + \left(\frac{x_0}{2} + x_1\right)^2 + \left(\frac{x_0}{2} + x_2\right)^2 + \left(\frac{x_0}{2} + x_3\right)^2 \right] \text{ is minimal}$$

when $x_0 = 1$ and $x_1 = x_2 = x_3 = 0 \Rightarrow N(\mathbf{u}) = p^2$.

 $p^2 = N(\mathbf{p}) = N(\mathbf{r}) \cdot N(\mathbf{u})$, where $N(\mathbf{r}) > 1$ and $N(\mathbf{u}) > 1$ is not satisfied.

47/59

э

- 「同下」 (三下) (三下)

May L be the Prime Hurwitz ideal V_p ?

$$\begin{array}{cc} H \\ H \\ V_p = \left\{ \left(\frac{p \cdot x_0}{2}, p \cdot \left(\frac{x_0}{2} + x_1\right), p \cdot \left(\frac{x_0}{2} + x_2\right), p \cdot \left(\frac{x_0}{2} + x_3\right) \right) | x_i \in \mathbb{Z} \right\} \\ \bullet V_p \text{ is an ideal of the Hurwitz ring } H; \\ \bullet (p, 0, 0, 0) = \left(\frac{p \cdot 2}{2}, p \cdot \left(\frac{2}{2} - 1\right), p \cdot \left(\frac{2}{2} - 1\right), p \cdot \left(\frac{2}{2} - 1\right) \right) \in V_p; \end{array}$$

Since $V_p \neq (0)$, the generator $u \in V_p$ is an element whose norm is minimal over the nonzero elements of V_p .

$$N(\mathbf{q}) = p^2 \left[\left(\frac{x_0}{2}\right)^2 + \left(\frac{x_0}{2} + x_1\right)^2 + \left(\frac{x_0}{2} + x_2\right)^2 + \left(\frac{x_0}{2} + x_3\right)^2 \right] \text{ is minimal}$$

when $x_0 = 1$ and $x_1 = x_2 = x_3 = 0 \Rightarrow N(\mathbf{u}) = p^2$.

 $p^2 = N(\mathbf{p}) = N(\mathbf{r}) \cdot N(\mathbf{u})$, where $N(\mathbf{r}) > 1$ and $N(\mathbf{u}) > 1$ is not satisfied.

シ ۹ (~ 47/59

・ 同 ト ・ ヨ ト ・ ヨ ト

We need to prove that V_p is not a maximal left ideal

シ へ (~ 48/59

(日)

 V_p is not a maximal ideal:

- Specification of quaternions over \mathbb{Z}_p :
 - $Q_{\mathbb{Z}_p} = \{(a_0, a_1, a_2, a_3) | a_i \in \mathbb{Z}_p\}$
- Prove that $Q_{\mathbb{Z}_p}$ is not a division ring;

```
quat_div_ring_char: LEMMA
charac(fullset[T]) /= 2 IMPLIES
((FORALL (x,y:T): a*(x*x) + b*(y*y) /= one) IFF
division_ring?[quat,+,*,zero_q,one_q](fullset[quat]))
```

• Apply the result that a ring, which is not a division ring, has a left-ideal different from the trivial ones.

49/59

< 回 > < 三 > < 三 >

V_p is not a maximal ideal:

• Building an epimorphism $\varphi:H\to Q_{\mathbb{Z}_p}$ such that $ker(\varphi)=V_p;$

$$\varphi\left(\left(\frac{x}{2}, \frac{x}{2} + y, \frac{x}{2} + z, \frac{x}{2} + t\right)\right) = (2^{p-2} \cdot x + p\mathbb{Z},$$
$$(2^{p-2} \cdot x + y) + p\mathbb{Z},$$
$$(2^{p-2} \cdot x + z) + p\mathbb{Z},$$
$$(2^{p-2} \cdot x + t) + p\mathbb{Z})$$

イロト イポト イヨト イヨト

V_p is not a maximal ideal:

- Building an epimorphism $\varphi:H\to Q_{\mathbb{Z}_p}$ such that $ker(\varphi)=V_p;$
- Using the First Isomorphism Theorem to prove that $H/V_p \cong Q_{\mathbb{Z}_p}.$
- Conclude using

```
maximal_ideal_charac2: THEOREM
ideal?(M,R) AND maximal_left_ideal?(M,R) =>
division_ring?(/[T,+](R,M))
```

(日)

51/59

The existence of an intermediate ideal L

Η

L

 V_p

•
$$\mathbf{p} = (p, 0, 0, 0) \in V_p$$
 implies $\mathbf{p} \in L$;
• $\mathbf{p} = \mathbf{r} \cdot \mathbf{u}$ for some $\mathbf{r} \in H$ and $\mathbf{u} \in L$
AND
• $p^2 = N(\mathbf{p}) = N(\mathbf{r}) \cdot N(\mathbf{u})$, where $N(\mathbf{r}) > 1$ and
by using
Hurwitz_prod_inv_exists: LEMMA
FORALL (h: (Hurwitz_ring)):
red_norm(h)`x = 1 IFF

EXISTS(r: (Hurwitz_ring)): h*r = one_q AND r*h = one_q

$$\bigcup_{p = N(\mathbf{u})}$$

୬ ୯.୧୬ 52/59

3

 $N(\mathbf{u}) > 1$

イロン イ団 とく ヨン イヨン

Euler's Trick

•
$$\mathbf{u} \in H \Longrightarrow \mathbf{u} = \left(\frac{m_0}{2}, \frac{m_0}{2} + m_1, \frac{m_0}{2} + m_2, \frac{m_0}{2} + m_3\right), m_i \in \mathbb{Z}.$$

•
$$2\mathbf{u} = (m_0, m_0 + 2m_1, m_0 + 2m_2, m_0 + 2m_3)$$
 and
 $N(2\mathbf{u}) = m_0^2 + (m_0 + 2m_1)^2 + (m_0 + 2m_2)^2 + (m_0 + 2m_3)^2$

• On the other hand,
$$N(2\mathbf{u}) = 4N(\mathbf{u}) = 4p$$

Euler's Trick

If
$$2a = x_0^2 + x_1^2 + x_2^2 + x_3^2$$
, where $a, x_0, x_1, x_2, x_3 \in \mathbb{Z}$ then

$$a=y_0^2+y_1^2+y_2^2+y_3^2$$
 for some $y_0,y_1,y_2,y_3\in\mathbb{Z}$

Proof: Depending on the parity of x_i , choose

$$y_0 = \frac{x_0 + x_1}{2}, y_1 = \frac{x_0 - x_1}{2}, y_2 = \frac{x_2 + x_3}{2}, y_3 = \frac{x_2 - x_3}{2}$$

Lagrange's four-square theorem

Given a positive integer x there are four non-negative integers a, b, c, d such that

$$x = a^2 + b^2 + c^2 + d^2$$

Proof: By induction on x.

54/59

イロト イボト イヨト イヨト

Formalization of Quaternion Algebras

[5] de Lima, Galdino, Oliveira Ribeiro, Ayala-Rincón
A Formalization of the General Theory of Quaternions
Proc. of 15th Interactive Theorem Proving, ITP 2024.
https://doi.org/10.4230/LIPIcs.ITP.2024.11

The formalization approach follows the same principle:

Related Work - Formalization of Quaternions

Andrea Gabrielli and Marco Maggesi (2017) Formalizing Basic Quaternionic Analysis. ITP 2017. Lecture Notes in Computer Science, vol 10499.

$https://doi.org/10.1007/978\hbox{-}3\hbox{-}319\hbox{-}66107\hbox{-}0_15$

Lawrence C. Paulson (2018) Quaternions. Archive of Formal Proofs.

https://isa-afp.org/entries/Quaternions.html

Reynald Affeldt and Cyril Cohen (2017) Formal foundations of 3D geometry to model robot manipulators. CPP 2017. ACM Proceedings.

https://doi.org/10.1145/3018610.30186

All of them are restricted to Hamilton's Quaternions.

Lean Mathlib includes general definitions and results about Quaternions. Mathlib.Algebra.Quaternion

56/59

・ 同 ト ・ ヨ ト ・ ヨ ト

Ring theory - An Overview

2 Euclidean Domains and Algorithms

- Correctness of the Abstract Euclidean Algorithm
- Correctness of Euclidean Algorithms on \mathbb{Z} and $\mathbb{Z}[i]$.

3 Quaternions

- General Theory of Quaternions
- Hamilton's Quaternions
- Lagrange's four-square Theorem

4 Conclusions

一日、

Conclusions

Our formalizations follow academic mathematical principles:

- first, formalize abstract theories with their generic properties;
- second, obtain particular structures as instantiations of the general theory and proceed with the formalization of their specialized properties.

🗱 Completing the theory of rings (rings of polynomials/polynomial factorization)

- 🗱 Formalizing properties of Hamilton's quaternions.
 - Enriching automation of PVS strategies for abstract structures.

< 回 > < 三 > < 三 >

References I

- Bini, G., Flamini, F.: Finite commutative rings and their applications, vol. 680. Springer Science & Business Media (2012)
 - de Lima, T.A., Avelar, A.B., Galdino, A.L., Ayala-Rincón, M., Formalization of Ring Theory in PVS: Isomorphism Theorems, Principal, Prime and Maximal Ideals, Chinese Remainder Theorem. Journal of Automated Reasoning, vol. 65. p. 1231–1263 (2021)
- de Lima, T.A., Avelar, A.B., Galdino, A.L., Ayala-Rincón, M., Formalizing Factorization on Euclidean Domains and Abstract Euclidean Algorithms. In Proceedings LSFA 2023. EPTCS 402, 2024, pp. 18-33
- - Ayala-Rincón, M., de Lima, T.A., Galdino, A.L., Avelar, A.B., Formalization of Algebraic Theorems in PVS. In EPiCS Proc. LPAR-24, 2023.
 - de Lima, T.A., Galdino, A.L., de Oliveira Ribeiro, B.B., Ayala-Rincón, M., A Formalization of the General Theory of Quaternions. In LiPIcs Proc. ITP 2024
 - Fraleigh, John B., A First Course in Abstract Algebra, Pearson, 2003 (1967).

Hungerford, Thomas W., Algebra, Graduate Texts in Mathematics, vol. 73, 1980 (1974).

э
References II

- Putinar, M. and Sullivant, S., Emerging Applications of Algebraic Geometry. Springer New York (2008)
- Voight, John: Quaternion Algebras, ed.1. Springer Cham (2021)
- Zeitlhöfler, Julian.:Nominal and observation-based attitude realization for precise orbit determination of the Jason satellites. PhD thesis. (2019)
- Don't Get Lost in Deep Space: Understanding Quaternions. All about circuits, 2017. Available in https://www.allaboutcircuits.com/technical-articles/ dont-get-lost-in-deep-space-understanding-quaternions/. Accessed on Feb.,13th, 2023.
 - File:Inscription on Broom Bridge (Dublin) regarding the discovery of Quaternions multiplication by Sir William Rowan Hamilton.jpg, 2017. Available in https://commons.wikimedia.org/wiki/File: Inscription_on_Broom_Bridge_%28Dublin%29_regarding_the_discovery_of_Quaternions_ multiplication_by_Sir_William_Rowan_Hamilton.jpg. Accessed on Feb.,13th, 2023.

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・