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The Anti-Unification Problem

Given: Two terms t1 and t2.

Find: Their generalization, a term t such that both t1 and t2 are
instances of t under some substitutions.
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Anti-Unification: Example

f(g(a, h(h(b))), h(b)) f(g(b, h(u)), u)

f(g(a, h(h(b))), h(b)) f(g(b, h(u)), u)

f(g(x, h(y)), y)

{x 7→ a, y 7→ h(b)} {x 7→ b, y 7→ u}



Anti-Unification: Example

f(g(a, h(h(b))), h(b)) f(g(b, h(u)), u)

f(g(a, h(h(b))), h(b)) f(g(b, h(u)), u)

f(g(x, h(y)), y)

{x 7→ a, y 7→ h(b)} {x 7→ b, y 7→ u}



Anti-Unification: Example

f(g(a, h(h(b))), h(b)) f(g(b, h(u)), u)

f(g(a, h(h(b))), h(b)) f(g(b, h(u)), u)

f(g(x, h(y)), y)

{x 7→ a, y 7→ h(b)} {x 7→ b, y 7→ u}



Anti-Unification: Example

f(g(a, h(h(b))), h(b)) f(g(b, h(u)), u)

f(g(a, h(h(b))), h(b)) f(g(b, h(u)), u)

f(g(x, h(y)), y)

{x 7→ a, y 7→ h(b)} {x 7→ b, y 7→ u}



Anti-Unification and Unification

t

t1 t2

σ1 σ2

tσ1 = = tσ2

s

ϑ ϑ

=t1ϑ = t2ϑ



Anti-Unification and Unification

t

t1 t2

σ1 σ2

tσ1 = = tσ2

s

ϑ ϑ

=t1ϑ = t2ϑ



Anti-Unification and Weak Unification
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Anti-Unification: Origins

I Anti-unification was introduced in two papers:

Plotkin, G.D.: A note on inductive generalization. Mach.
Intell. 5(1), 153–163 (1970)

Reynolds, J.C.: Transformational systems and the algebraic
structure of atomic formulas. Mach. Intell. 5(1), 135–151
(1970)



Anti-Unification: Origins

I Reynolds coined the term “anti-unification”.

I Plotkin defined C1 ≤ C2 for “a clause C1 is more general than
a clause C2” iff there exists σ such that C1σ ⊆ C2.

I To justify this choice of notation, he writes:

We have chosen to write L1 ≤ L2 rather than L1 ≥ L2

as Reynolds (1970) does, because in the case of clauses,
‘≤’ is almost the same as ‘⊆’...



Anti-Unification: Origins

I Huet in 1976 formulated an algorithm in terms of recursive
equations:

Let φ be a bijection from a pair of terms to variables.
Define a function λ, which maps pairs of terms to terms:

1. λ(f(t1, . . . , tn), f(s1, . . . , sn)) = f(λ(t1, s1), . . . , λ(tn, sn)),
for any f .

2. λ(t, s) = φ(t, s) otherwise.
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Anti-Unification: Applications

I The original motivation of introducing anti-unification was its
application in automating induction.

I Since then, anti-unification has been used in reasoning by
analogy, machine learning, inductive logic programming,
software engineering, program synthesis, analysis,
transformation, ...

I Algorithms suitable for those applications have been
developed.



Software Code Clone Detection with Anti-Unification

I One of the interesting applications of anti-unification is in
software code clone detection.

I Clones are similar pieces of software code.

I Obtained by reusing code fragments.

I Quite a typical practice.



Why Should Clones Be Detected?

In general, they are harmful:

I Additional maintenance effort.

I Additional work for enhancing and adapting.

I Inconsistencies presenting fault.



Why Should Clones Be Detected?

Extraction of similar code fragments may be required for

I program understanding

I code quality analysis

I plagiarism detection

I copyright infringement investigation

I software evolution analysis

I code compaction

I bug detection



Classification

Roy, Cordy and Koschke (2009) distinguish four types of clones:

Type 1: Identical code fragments except for variations in
whitespace, layout, and comments.

Type 2: Syntactically identical fragments except for variations in
identifiers, types, whitespace, layout, and comments.

Type 3: Copied fragments with further modifications such as
changed, added or removed statements, in addition to
variations in identifiers, types, whitespace, layout, and
comments.

Type 4: Two or more code fragments that perform the same
computation but are implemented by different syntactic
variants.

1–3: Syntactic clones.



Examples of Syntactic Clone Types

if (a >= b) { if (a >= b) {

c = d + b; // Comment1 c = d + b; d = d + 1;

d = d + 1;} }

else else

c = d - a; // Comment2 c = d - a

Type 1: Identical code fragments except for variations in
whitespace, layout, and comments.



Examples of Syntactic Clone Types

if (a >= b) { if (m >= n)

c = d + b; // Comment1 { // Comment1’

d = d + 1;} y = x + n;

else x = x + 5; //Comment3

c = d - a; // Comment2 }

else

y = x - m; //Comment2’

Type 2: Syntactically identical fragments except for variations in
identifiers, types, whitespace, layout, and comments.



Examples of Syntactic Clone Types

if (a >= b) { if (m >= n)

c = d + b; // Comment1 { // Comment1’

d = d + 1;} y = x + n;

else z = 1; // Added statement

c = d - a; // Comment2 x = x + 5; //Comment3

}

else

y = x - m; //Comment2’

Type 3: Copied fragments with further modifications such as
changed, added or removed statements, in addition to
variations in identifiers, types, whitespace, layout, and
comments.



Generic Clone Detection Process

From Roy, Cordy, and Koschke (2009):

1. Preprocessing: Remove uninteresting code, determine source
and comparison units/granularities.

2. Transformation: Obtain an intermediate representation of the
preprocessed code.

3. Detection: Find similar source units in the transformed code.

4. Formatting: Clone locations of the transformed code are
mapped back to the original code.

5. Filtering: Clone extraction, visualization, and manual analysis
to filter out false positives.



Clone Detection and Anti-Unification

1. Tree-based approach.

2. Anti-unification is used in the detection step.

3. Anti-unification based tools:
I Breakaway (Cottrel at al, 2007)
I CloneDigger (Bulychev et al. 2009).
I Wrangler (Li and Thompson, 2010).
I HaRe (Brown and Thompson, 2010).

4. Achieve high precision.

5. Detect primarily clones of type 1 and 2.



Clones and Their Refactoring

if (a >= b) { if (m >= n)

c = d + b; // Comment1 { // Comment1’

d = d + 1;} y = x + n;

else x = x + 5; //Comment3

c = d - a; // Comment2 }

else

y = x - m; //Comment2’

proc(x1,x2,x3,x4,x5) =

if (x1 >= x2) {

x3 = x4 + x2;

x4 = x4 + x5;}

else

x3 = x4 - x1;

proc(a,b,c,d,1) proc(m,n,y,x,5)



Analogy Making and Anti-Unification

Example: Generalization of recursive program schemes from given
structurally similar programs [Schmid, 2000].

Method: Restricted higher-order anti-unification.

Idea: Simple: abstract different heads of terms with a function
variable if the arities coincide. Otherwise abstract with a
term variable.

Example

Input:

I fac(x) = if(eq0(x), 1, *(x, fac(p(x)))

I sqr(y) = if(eq0(y), 0, +(+(y,p(y)), sqr(p(y)))

Generalization

I X(z) = if(eq0(z), Y, Z(u, X(p(z)))



Analogy Making and Anti-Unification

Example: Replay of program derivations [Hasker, 1995].

Given: Formal program specification together with a program
fulfilling this specification, both connected by a
derivation.

Assume: The specification has been slightly rewritten.

Goal: Instead of fully deriving a new program, alter the
existing derivation and implementation along the
changes of specification.

Method: Use higher-order anti-unification for combinator terms to
detect changes and similarities between the old and the
new specification, changes which can be propagated by
adjusting the existing derivation.



Machine Learning and Anti-Unification

Example: An inductive learning method INDIE developed in
[Armengol & Plaza, 2000].

Given: A training set of positive and negative examples,
represented as feature terms.

Find: A description satisfied (subsumed) by all positive
examples and no negative example.

Method: Feature term anti-unification (for positive examples).



Symbolic Computation and Anti-Unification

Example: Abstracting symbolic matrices [Almomen, Sexton,
Sorge 2012]

Given: A concrete symbolic matrix.

Goal: Obtain a more compact representation employing ellipses
in order to expose homogeneous regions present in the
matrix.

Method: Use a version of first-order anti-unification with a special
treatment of integer constants.



Symbolic Computation and Anti-Unification



Program Analysis and Anti-Unification

Example: Invariant computation [Bulychev, Kostylev,
Zakharov 2010]

Given: A program represented as a set assignment statements
(with input and output points labeled by natural
numbers), and a program point labeled by l.

Find: Most specific invariant at point l. An invariant at l is a
(existentially closed equational) formula which holds for
any run at point l.

Method: Based on anti-unification of substitutions. Compute an
lgg of substitutions induced by sequences of variable
assignments in runs.



Linguistics and Anti-Unification

Example: Modeling metaphoric expressions [Gust, Kühnberger,
Schmid 2006]

Given: A metaphor as e.g., in “Electrons are the planets of the
atom”.

Find: Its formal representation.

Method: Using heuristic-driven theory projection, which is based
on anti-unification.



More . . .

I Relative lgg [Plotkin 1971] taking into account background
knowledge.

I Anti-unification in the Calculus of Constructions
[Pfenning 1991] aiming at proof generalizations.

I Anti-unification for relaxed patterns [Feng and Muggleton
1992] for inductive logic programming.

I Generalization under implication (special forms)
[Idestam-Almquist 1995, Nienhuys-Cheng & de Wolf 1996] for
inductive logic programming.



More . . .

I Anti-unification in λ2 [Lu et al. 2000] for reusing proofs about
programs.

I Anti-unification for simple unranked hedges [Yamamoto et al
2001] for inductive reasoning about hedge logic programs.

I Second-order generalization [Chiba, Aoto, Toyama 2008] for
automatic construction of program transformatione templates.

I Variations of restricted higher-order anti-unification [Bobere &
Besold 2012] in analogy-making.

I Anti-unification for relational rules [de Souza Alcantara et al.
2012] for learning custom gestures.



More . . .

I Order-sorted feature term generalization
[Äıt-Kaci, Sasaki 1983]

I AC anti-unification [Pottier 1989].

I Anti-unification in commutative theories [Baader 1991].

I Variants of second order anti-unification [Hirata, Ogawa,
Harao 2004].

I Word anti-unification [Biere 1993, Ciceckli & Ciceckli 2006].

I Constrained anti-unification [Page 1993].

I E-generalizations using regular tree grammars
[Burghardt 2005].

I Equational and order-sorted anti-unification
[Alpuente et al, 2008, 2009, 2013].



More . . .

I Anti-unification for unranked terms
[Kutsia, Levy, Villaret 2011].

I Pattern anti-unification for simply-typed λ-calculus
[Baumgartner et al. 2013].

I Restricted second-order unranked anti-unification
[Baumgartner, Kutsia 2014].

I Nominal anti-unification
[Baumgartner et al. 2014].

I Anti-Unification Library:
http://www.risc.jku.at/projects/stout/

http://www.risc.jku.at/projects/stout/
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Nominal Anti-Unification: Syntax

I Nominal terms contain variables, atoms, and function
symbols.

I Variables can be instantiated and atoms can be bound.

I A swapping (a b) is a pair of atoms.

I A permutation π is a sequence of swappings.

I Nominal terms:

t ::= f(t1, . . . , tn) | a | a.t | π ·X

I Permutations apply to terms and cause swapping the names
of atoms (permutation action).

I (c b)(a b) • f(c, b.g(a, b), X) = f(b, a.g(c, a), (c b)(a b) ·X).
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Freshness Constraints

I Freshness constraint: a#X.

I The instantiation of X cannot contain free occurrences of a.

I “a is fresh for X”, “a is forbidden in X”.

I Freshness context: a finite set of freshness constraints.



Substitutions

I Substitution: a mapping from variables to terms.

I Substitution application allows atom capture:
a.X{X 7→ a} = a.a.

I A substitution σ respects a freshness context ∇ if for all X,
free atoms in Xσ (except those in suspensions) are not
forbidden in X by ∇.

I For instance, if ∇ = {a#X, b#X, b#Y }, then
I {X 7→ f(c), Y 7→ b.f(b)} respects ∇.
I {X 7→ (a c)(b a) · Y, Y 7→ f(a)} respects ∇.
I {X 7→ f(a)} does not respect ∇.
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≈ and #

The intended meanings of ≈ (the α-equivalence predicate) and
# (the freshness predicate):

1. ∇ ` t ≈ u holds, if for every substitution σ such that tσ and
uσ are ground terms and σ respects the freshness context ∇,
tσ and uσ are α-equivalent.

2. ∇ ` a#t holds, if for every substitution σ such that tσ is a
ground term and σ respects the freshness context ∇, the
atom a is not free in tσ.



Rules for ≈

∇ ` a ≈ a
(≈-atom)

∇ ` t ≈ t′

∇ ` a.t ≈ a.t′
(≈-abs-1)

a 6= a′ ∇ ` t ≈ (a a′) • t′ ∇ ` a#t′

∇ ` a.t ≈ a′.t′
(≈-abs-2)

a#X ∈ ∇ for all a such that π • a 6= π′ • a
∇ ` π·X ≈ π′ ·X

(≈-susp.)

∇ ` t1 ≈ t′1 · · · ∇ ` tn ≈ t′n
∇ ` f(t1, . . . tn) ≈ f(t′1, . . . , t

′
n)

(≈-application)



Rules for #

a 6= a′

∇ ` a#a′
(#-atom)

(π−1 • a#X) ∈ ∇
∇ ` a#π·X

(#-susp.)

∇ ` a#t1 · · · ∇ ` a#tn
∇ ` a#f(t1, . . . tn)

(#-application)

∇ ` a#a.t
(#-abst-1)

a 6= a′ ∇ ` a#t

∇ ` a#a′.t
(#-abst-2)



Instance of a Freshness Context

I Using the rules for ≈ bottom-up, one can solve the following
problem:

I Given: A set {a1#t1, . . . , an#tn}.
I Compute: A ⊆-minimal freshness context ∇ such that
∇ ` a1#t1, . . . ,∇ ` an#tn.

I Call this algorithm FC.

I An instance of a freshness context ∇ under a substitution σ:

∇σ := FC({a#Xσ | a#X ∈ ∇}).

I Example:
I ∇ = {a#X, b#X, b#Y }.
I σ = {X 7→ (a c)(a b)·Y, Y 7→ f(a)}.
I ∇σ = FC({a#(a c)(a b)·Y, b#(a c)(a b)·Y, b#f(a)}) =
{(a b)(a c) • a#Y, (a b)(a c) • b#Y } = {c#Y, a#Y }.
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Term-In-Context, Subsumption Order

I Term-in-context: a pair 〈∇, t〉 of a freshness context ∇ and a
term t.

I Subsumption order defined on terms-in-context:

〈∇1, t1〉 � 〈∇2, t2〉

if there exists a substitution σ such that
I σ respects ∇1,
I ∇1σ ⊆ ∇2, and
I ∇2 ` t1σ ≈ t2.



Subsumption Order: Examples

I 〈∅, f(a)〉 � 〈{a#X}, f(a)〉 (with σ = ε).

I 〈{a#X}, f(a)〉 � 〈∅, f(a)〉 (with σ = {X 7→ b}).

I 〈{a#X}, f(X)〉 6� 〈∅, f(X)〉.
I 〈∅, f(X)〉 � 〈{a#Y }, f(Y )〉 with σ = {X 7→ Y }.



Subsumption Order: Examples

I 〈{a#X}, f(X)〉 6� 〈{a#X}, f(a)〉.
I 〈{b#X}, (a b)·X〉 � 〈{c#X}, (a c)·X〉 (with
σ = {X 7→ (a b)(a c)·X}).

I 〈{c#X}, (a c)·X〉 � 〈{b#X}, (a b)·X〉 (with
σ = {X 7→ (a c)(a b)·X}.



Generalization

I 〈Γ, r〉 is called a generalization of 〈∇1, t〉 and 〈∇2, s〉 if
〈Γ, r〉 � 〈∇1, t〉 and 〈Γ, r〉 � 〈∇2, s〉.

I 〈Γ, r〉 least general generalization (lgg) of 〈∇1, t〉 and 〈∇2, s〉
if there is no generalization 〈Γ′, r′〉 of 〈∇1, t〉 and 〈∇2, s〉
which satisfies 〈Γ, r〉 ≺ 〈Γ′, r′〉.

I Similar to unification, we can also talk about a minimal
complete set of generalizations.
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Bad News

Nominal anti-unification is of type 0.

Example

I Given terms-in-contexts: 〈∅, a1〉 and 〈∅, a2〉.
I In any complete set of generalizations of them there is an

infinite chain

〈∅, X〉 ≺ 〈{a3#X}, X〉 ≺ 〈{a3#X, a4#X}, X〉 ≺ · · · ,

where {a1, a2, a3, . . .} is the set of all atoms of the language.

I Hence, 〈∅, a1〉 and 〈∅, a2〉 do not have a minimal complete set
of generalizations.

A way out: restrict the set of atoms permitted in generalizations.
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Term-In-Context Based on an Atom Set

I A term-in-context 〈∇, t〉 is based on a set of atoms A, if all
the atoms in t and ∇ are elements of A.

I For instance, 〈{b#X}, f(c.g(c), (a b) ·X)〉 is based on
{a, b, c} and on {a, b, c, d}, but not on {a, b, d}.



Nominal Anti-Unification Problem

Given: Two nominal terms t1 and t2, a freshness context ∇, and a
finite set of atoms A such that 〈∇, t1〉 and 〈∇, t2〉 are
based on A.

Find: A term-in-context 〈Γ, t〉 which is also based on A, such that
〈Γ, t〉 is a least general generalization of 〈∇, t1〉 and 〈∇, t2〉.



Solving The Nominal Anti-Unification Problem

Notation:

I Anti-unification triple (AUT): X : t , s.

I X: generalization variable.



Solving The Nominal Anti-Unification Problem

The rule-based NAU algorithm works on tuples P ; S; Γ; σ and two
global parameters A and ∇, where

I P and S are sets of AUTs.

I If X : t , s ∈ P ∪ S, then X is unique in P ∪ S.

I P : AUTs to be solved (the problem).

I S: already solved AUTs (the store).

I A is a finite set of atoms.

I ∇ does not constrain generalization variables.

I Γ: freshness context (computed so far) which constrains
generalization variables.

I σ: substitution (computed so far) mapping generalization
variables to nominal terms.

I P , S, ∇, Γ: A-based.



Solving The Nominal Anti-Unification Problem

Example

To anti-unify two terms-in-context 〈{b#Y }, f(b, a)〉 and
〈{b#Y }, f(Y, (a b)·Y )〉, based on the set of atoms {a, b}, we need
to create the initial system P ; S; Γ; σ where

I P = {X : f(b, a) , f(Y, (a b)·Y )},
I S = ∅,
I Γ = ∅,
I σ = ε,

and initialize the global parameters A and ∇ as

I A = {a, b},
I ∇ = {b#Y }.



Rules of The Nominal Anti-Unification Algorithm

Decomposition:

{X : h(t1, . . . , tm) , h(s1, . . . , sm)} ·∪P ; S; Γ; σ =⇒
{Y1 : t1 , s1, . . . , Ym : tm , sm} ∪ P ; S; Γ;

σ{X 7→ h(Y1, . . . , Ym)}

where h is a function symbol or an atom, Y1, . . . , Ym are fresh, and
m ≥ 0.



Rules of The Nominal Anti-Unification Algorithm

Abstraction:

{X : a.t , b.s} ·∪P ; S; Γ; σ =⇒
{Y : (c a) • t , (c b) • s} ∪ P ; S; Γ; σ{X 7→ c.Y },

where Y is fresh, c ∈ A, ∇ ` c#a.t and ∇ ` c#b.s.



Rules of The Nominal Anti-Unification Algorithm

Solving:

{X : t , s} ·∪P ; S; Γ; σ =⇒
P ; S ∪ {X : t , s}; Γ ∪ Γ′; σ,

if none of the previous rules is applicable. The set Γ′ is defined as
Γ′ := {a#X | a ∈ A ∧ ∇ ` a#t ∧ ∇ ` a#s}.



Rules of The Nominal Anti-Unification Algorithm

Merging:

P ; {X : t1 , s1, Y : t2 , s2} ·∪S; Γ; σ =⇒
P ; {X : t1 , s1} ∪ S; Γ{Y 7→ π·X}; σ{Y 7→ π·X},

where π is an Atoms(t1, s1, t2, s2)-based permutation such that
∇ ` π • t1 ≈ t2, and ∇ ` π • s1 ≈ s2.



NAU Algorithm: Example

Let t = f(a, b), s = f(b, c), ∇ = ∅, and A = {a, b, c, d}.

The NAU algorithm run:

{X : f(a, b) , f(b, c)}; ∅; ∅; ε =⇒Dec

{Y : a , b, Z : b , c}; ∅; ∅; {X 7→ f(Y,Z)} =⇒Sol

{Z : b , c}; {Y : a , b}; {c#Y, d#Y }; {X 7→ f(Y, Z)} =⇒Sol

∅; {Y : a , b, Z : b , c}; {c#Y, d#Y, a#Z, d#Z};
{X 7→ f(Y, Z)} =⇒Mer

∅; {Y : a , b}; {c#Y, d#Y }; {X 7→ f(Y, (a b)(b c)·Y )}



NAU Algorithm: Example

Let t = f(b, a), s = f(Y, (a b)·Y ), ∇ = {b#Y }, and A = {a, b}.

The NAU algorithm computes p = 〈∅, f(Z, (a b)·Z)〉.

It generalizes the input pairs:
p{Z 7→ b} = 〈∅, f(b, a)〉 � 〈∇, t〉,
p{Z 7→ Y } = 〈∅, f(Y, (a b)·Y )〉 � 〈∇, s〉.



NAU Algorithm: Example

Let t = f(a.b,X), s = f(b.a, Y ), ∇ = {c#X}, A = {a, b, c, d}.

The NAU algorithm computes p = 〈{c#Z1, d#Z1}, f(c.Z1, Z2)〉.

It generalizes the input pairs:
p{Z1 7→ b, Z2 7→ X} = 〈∅, f(c.b,X)〉 � 〈∇, t〉,
p{Z1 7→ a, Z2 7→ Y } = 〈∅, f(c.a, Y )〉 � 〈∇, s〉.



Properties of the NAU Algorithm

Informally:

I Soundness: The result computed by the algorithm is indeed
an A-based gener- alization of the input terms-in-context.

I Completeness: For any A-based generalization of the input
terms-in-context, the algorithm can compute one which is at
most as general that the given generalization.

I Uniqueness: All generalizations computed by the algorithm via
different AUT choices are the same modulo variable renaming
and α-equivalence.



The Result Depends on the Choice of the Set of Atoms

Example

Let A1 = {a, b} and A2 = {a, b, c}.
I A1-based lgg of 〈∅, a.b〉 and 〈∅, b.a〉: 〈∅, X〉.
I A2-based lgg of 〈∅, a.b〉 and 〈∅, b.a〉: 〈{c#X}, c.X〉.



A Pragmatic Question

Given t, s and ∇, how to choose a set of atoms A so that

(a) t, s, ∇ are A-based and

(b) in the A-based lgg 〈Γ, r〉 of 〈∇, t〉 and 〈∇, s〉, the term r
generalizes s and t in the “best way”, maximally preserving
similarities and uniformly abstracting differences between s
and t.

Answer: Besides all the atoms occurring in t, s, or ∇, A should
contain at least m more atoms, where m = min{‖t‖

Abs
, ‖s‖

Abs
}.

‖t‖
Abs

stands for the number of abstraction occurrences in t.
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Deciding Equivariance

Recall Merging:

P ; {X : t1 , s1, Y : t2 , s2} ·∪S; Γ; σ =⇒
P ; {X : t1 , s1} ∪ S; Γ{Y 7→ π·X}; σ{Y 7→ π·X},

where π is an Atoms(t1, s1, t2, s2)-based permutation such that
∇ ` π • t1 ≈ t2, and ∇ ` π • s1 ≈ s2.

The condition requires an algorithm that constructively decides
whether t and s are equivariant with respect to ∇:

Given: t, s, and ∇.

Find: An Atoms(t, s)-based permutation π such that
∇ ` π • t ≈ s.



Equvariance Decision Algorithm

A rule-based algorithm E, working on tuples E; ∇; A; π.

I E: A set of equivariance equations of the form t ≈ s.

I ∇: A freshness context.

I A: A finite set of atoms which are available for computing π.

I π holds the permutation to be returned in case of success.



Equvariance Decision Algorithm

I First phase: simplification. Function applications, abstractions
and suspensions are decomposed as long as possible.

I Second phase: permutation computation.



Equvariance Decision Algorithm: First Phase Rules

Decomposition in Equivariance

{f(t1, . . . , tm) ≈ f(s1, . . . , sm)} ·∪E; ∇; A; Id =⇒
{t1 ≈ s1, . . . , tm ≈ sm} ∪ E; ∇; A; Id .

Alpha Equivalence

{a.t ≈ b.s} ·∪E; ∇; A; Id =⇒
{(a ć) • t ≈ (b ć) • s} ∪ E; ∇; A; Id ,

where ć is a fresh atom of the same sort as a and b.

Suspension

{π1 ·X ≈ π2 ·X} ·∪E; ∇; A; Id =⇒
{π1 • a ≈ π2 • a | a ∈ A ∧ a#X 6∈ ∇} ∪ E; ∇; A; Id .



Equvariance Decision Algorithm: Second Phase Rules

Remove

{a ≈ b} ·∪E; ∇; A; π =⇒ E; ∇; A \ {b}; π,

if π • a = b.

Solve in Equivariance

{a ≈ b} ·∪E; ∇; A; π =⇒ E; ∇; A \ {b}; (π • a b)π

if π • a ∈ A, b ∈ A, and π • a 6= b.



Equivariance Decision Algorithm: Example

Equivariance problem E = {a ≈ a, a.(a b)(c d)·X ≈ b.X} and
∇ = {a#X}:

{a ≈ a, a.(a b)(c d)·X ≈ b.X}; {a#X};
{a, b, c, d}; Id =⇒ Alpa Equivalence

{a ≈ a, (a é)(a b)(c d)·X ≈ (b é)·X}; {a#X};
{a, b, c, d}; Id =⇒ Suspension

{a ≈ a, é ≈ é, d ≈ c, c ≈ d}; {a#X};
{a, b, c, d}; Id =⇒ Remove

{é ≈ é, d ≈ c, c ≈ d}; {a#X}; {b, c, d}; Id =⇒ Remove

{d ≈ c, c ≈ d}; {a#X}; {b, c, d}; Id =⇒ Solve in Equivariance

{c ≈ d}; {a#X}; {b, d}; (d c) =⇒ Remove

∅; {a#X}; {b}; (d c).



Properties of the Equivariance Algorithm

Informally:

I Soundness: The computed permutation shows that the input
terms are equivariant.

I Completeness: For any permutation that shows that the input
terms are equivariant, the algorithm computes one that is
equal to the given permutation (on the set of free atoms of
the corresponding term).



Complexity

I Given a set of equivariance equations E and a freshness
context ∇, the equivariance algorithm has O(n2 +m) time
complexity, where m be the size of ∇, and n is the size of E.

I The nominal anti-unification algorithm has O(n5) time
complexity and O(n4) space complexity, where n is the input
size.
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Implementation

I http://www.risc.jku.at/projects/stout/

I Implemented in Java, open source.

I Both algorithms are accessible online and can be downloaded.

I The equivariance algorithm is also available separately.

http://www.risc.jku.at/projects/stout/

	The Anti-Unification Problem
	Early Algorithms of Anti-Unification
	Applications
	Nominal Anti-Unification

