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Abstract. This paper discusses the formalization in PVS of diverse8

proofs of the infinitude of primes. These proofs are developed using tech-9

niques taken from various areas of mathematics, such as set theory, al-10

gebra, analysis, number theory, and topology. The availability of such a11

variety of proofs is helpful as a didactic resource and aims to encourage12

mathematicians working in different areas to adopt interactive theorem13

provers as one of their everyday tools. The presented collection of for-14

malizations follows the proofs selected by Erdös, Aigner, and Ziegler in15

their famous work “Proofs from THE BOOK,” namely those based on16

Fermat numbers, Mersenne numbers and algebraic structures, topologi-17

cal properties, and the analysis of harmonic series. The paper discusses18

the differences between the informal proofs and the mechanical formal-19

ization and highlights the usefulness of distinguishing features of PVS to20

guide and facilitate the presented mechanization.21

Keywords: Primes, Fermat Numbers, Mersenne Numbers, Harmonic22

Series, Theorem Proving, Algebraic Formalizations, PVS.23

1 Introduction24

Euclid’s proof of the infinitude of primes [3] is a classic and highly illustrative25

result. As the concept of primality is typically presented in introductory math26

courses, this proof offers an excellent example of approaching problems involving27

infinity. Over the years, many mathematicians, such as Paul Erdös, have provided28

new proofs of this result, each drawing from different areas of mathematics.29

These proofs are not only valuable for showcasing the tools offered by such30

diverse fields, but they also serve as a reminder that mathematics is a profoundly31

interconnected discipline, where concepts and techniques from diverse branches32

often come together to solve fundamental problems.33

In the context of formalizing mathematical knowledge, proof assistants offer34

invaluable tools to ensure rigor and correctness. They provide a structured and35
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reliable approach to formalizing and verifying logical reasoning, ensuring that36

the proof is free of errors, ambiguities, and gaps. This work presents five alter-37

native proofs of the infinitude of primes using the Prototype Verification System38

(PVS) [21]. These formalizations explore different proof techniques derived from39

various areas of mathematics, such as algebra, number theory, topology, and40

analysis. Each proof is constructed carefully to ensure logical consistency and41

rigor. The proofs are derived from those in “Proofs from THE BOOK” by Martin42

Aigner and Günter Ziegler [1], which offers six different proofs. Euclid’s classical43

proof, the first in the mentioned book, is omitted here as it is already part of44

the NASA PVS Libraries, NASALib.4 The presented mechanization relies on45

results from diverse libraries from NASALib and the PVS prelude. NASALib46

provides valuable abstractions for mathematical structures such as sets, groups,47

and Cartesian products.48

Notably, this work does not assume the infinitude of primes beforehand, as49

circular reasoning is not accepted by proof assistants such as PVS. This kind of50

circularity can arise inadvertently in manual theorem proving when using a result51

much stronger than necessary. A notable example is using Gödel Completeness52

Theorem [14] to prove the Compactness Theorem. In “Proofs from THE BOOK,”53

notation such as p1, p2, p3, . . . is used for prime enumeration, but notice that this54

type of notation assumes the infinitude of primes beforehand.55

One key aspect of this study is the identification and correction of notational56

errors and informalities in “Proofs from THE BOOK.” PVS’s robust type system57

helped to highlight and address these flaws, ensuring the proofs are precise and58

rigorous. Moreover, this work emphasizes the educational value of using PVS to59

formalize mathematical proofs. By breaking down the proofs into step-by-step60

procedures, this work not only demonstrates various formal proof techniques but61

also serves as a pedagogical resource. It offers readers the opportunity to learn62

how to structure and validate proofs within a proof assistant, fostering a deeper63

understanding of formal methods in mathematics. Thus, the mechanization of64

these proofs serves both as a study of mathematical reasoning and as a guide to65

using proof assistants effectively in diverse mathematical contexts.66

1.1 Related work67

A significant number of the needed theorems for fields such as algebra, number68

theory, analysis, and topology are already available as PVS formalizations in69

NASALib [4,15,19]. These theorems were imported when the code was initially70

set up, which greatly streamlined the work. This allows for a solid foundation,71

avoiding the need to prove basic results and instead focusing on more advanced72

or specific aspects of the problem at hand.73

Euclid’s classic proof of the infinitude of primes has been formalized in var-74

ious proof assistants, each presenting different approaches. One notable collec-75

tion of such formalizations can be found in the “Formalizing 100 Theorems”76

4 See https://github.com/nasa/pvslib/blob/master/numbers/infinite_primes.
pvs.

https://github.com/nasa/pvslib/blob/master/numbers/infinite_primes.pvs
https://github.com/nasa/pvslib/blob/master/numbers/infinite_primes.pvs
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project [26], where formalizations on eleven different proof assistants are refer-77

enced. The usual strategies employed in these formalizations often revolve around78

two key techniques. One approach uses the product of primes plus one variant79

of Euclid’s proof, as seen in proofs formalized in systems like Naproche [17] and80

the NASALib itself. The other approach employs a factorial plus one method,81

which is used in the Isabelle/HOL and Coq proofs.82

In addition to classical Euclid’s proof of the infinitude of primes, other proofs83

have been developed using different proof assistants, such as those found in Is-84

abelle. Such proofs are Fürstenberg’s topological proof [9] and another involving85

the zeta function [8]. The topology-based proof is simpler to formalize, as it relies86

on fewer mathematical structures compared to other proofs in “Proofs from THE87

BOOK" (“THE BOOK,” for short), leaving less room for alternative approaches.88

As a result, the existing formalization differs primarily in how it is handled by89

different proof assistants rather than in the structure of the proof itself. How-90

ever, it remains valuable to include this proof in the presented formalization, as91

it offers an opportunity to showcase the topology library from NASALib. On92

the other hand, the proof of the zeta function, which is also presented in “THE93

BOOK” and will be covered here as well, diverges more from ours since it takes a94

more complex analytical approach, such as using the analytic continuation of the95

zeta function and then employing the divergence at s = 1 to prove the infinitude96

of primes.97

While the primary focus of this paper is on the first topic of “THE BOOK,”98

which addresses the infinitude of primes, it is also worth noting that there are99

other formalizations in “THE BOOK” beyond this first topic. These include100

proofs of the irrationality of certain numbers [22] and Fermat’s two-square the-101

orem [5].102

1.2 Main contributions103

The main contributions of this work are:104

– The formalization in PVS of five additional proofs for the infinitude of105

primes, which can be presented as applications of the results from various106

NASALib’s libraries, such as ints, algebra, analysis, and topology.107

– The discussion and formalization of omitted details in “Proofs from THE108

BOOK.”109

– A new approach for the standard prime factorization theorem in NASALib110

and general structure specification.111

– Several improvements in the algebra library, such as the Z/pZ coset ma-112

nipulation and type-checking related problems.113

– Minor improvements in the manipulation of integer expressions in PVS, es-114

pecially related to the gcd function.115

1.3 Organization116

Section 2 sketches the informal proofs that guide the formalization presented117

in this paper. Section 3 discusses aspects of the formalizations, focusing on the118
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two more interesting proofs in terms of the usage of distinguishing typing fea-119

tures provided by PVS and the level of difficulty involved in their mechanical120

verification. Section 4 concludes the paper by providing some final remarks, also121

providing quantitative data, and discussing possible lines of future work. The pa-122

per includes hyperlinks to specific points of the formalization, which are properly123

marked using this symbol æ. An appendix includes details of the proofs.124

2 Brief Description of the Informal Proofs125

This section briefly describes the proofs addressed in the presented formalization.126

In the following, the set of prime numbers is denoted by P.127

2.1 Fermat numbers128

The second proof detailed in [1] uses number theory [16]. More precisely, it uses
the infinitude of the Fermat numbers [23]. The Fermat numbers are of the form:

Fn = 22
n

+ 1, where n ∈ Z≥0

The main idea guiding the proof is to show that Fermat numbers are pairwise129

relative primes. In other words, each Fermat number must have at least one130

distinct prime divisor. Since it is possible to find infinitely many Fermat numbers,131

it follows that there must be infinitely many prime numbers. Since NASALib and132

the PVS prelude provide a strong set of theorems in number theory, this proof133

turned out to be one of the shortest.134

2.2 Mersenne Numbers135

The third proof uses the Mersenne numbers [23], which are defined as Mn =136

2n − 1, n ∈ Z≥0. In this proof, n is restricted to the set of prime numbers and137

is denoted by p. The main idea of the proof is to show that there exists a prime138

divisor q of Mp, such that q is greater than p. If there were finite primes, there139

must exist a maximum prime pmax. This is a contradiction since one can find a140

greater prime from the set of divisors of Mpmax
.141

The approach followed in “Proofs from THE BOOK” is based on abstract142

algebra, using Lagrange’s Theorem [18] and the fact that Zq \ {0} is a group143

under multiplication. The proof is structured as described below.144

1. Let p be an arbitrary prime and q be one prime factor of Mp = 2p−1. Notice145

that q must be odd since 2p − 1 is odd.146

2. Since q divides 2p − 1, this implies that 2p ≡ 1(mod q). The number p is a147

prime; thus, it must be the order of the element 2 in Zq \ {0}. Otherwise,148

there would be r ∈ N, 1 < r < p, which divides p.149

3. An element a ∈ Zq \{0} of order n generates a subgroup ⟨a⟩ = {ai : i ∈ Z≥0}150

with cardinality |⟨a⟩| = n. By applying Lagrange’s Theorem, |⟨2⟩| = p divides151

|Zq \ {0}| = q − 1.152

4. Assume there exists a maximum prime pmax. Thus, there exists q ∈ P such153

that pmax | q − 1. Consequently, pmax ≤ q − 1, and pmax < q, which is a154

contradiction. Therefore, there are infinitely many primes.155
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2.3 Euler Product Formula and Cauchy Equality156

The structure of the manual proof can be divided into the following steps.157

1. Let π(n) be the prime-counting function that counts the number of prime158

numbers smaller than or equal to n. Suppose there exists an enumeration of159

P in increasing order.160

2. The harmonic numbers can be underestimated with natural logarithms as

log(n) ≤ Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n

3. The product of a geometric series of inverse prime numbers less than or equal
to n is equal to another series that contains every 1

k from Hn = 1+ 1
2+. . .+ 1

n :

Hn ≤
π(n)∏
i=1

∞∑
k=0

1

pki
=

∑
k∈Z>0,

k=1 ∨ ∃p∈P,
(p≤n ∧ p|k)

1

k

4. For each prime number pi, the geometric series
∑∞

k=0
1
pk
i

converges to pi

pi−1 .

Also, pi ≥ i+ 1, which implies that pi

pi−1 ≤ i+1
i . Consequently,

π(n)∏
i=1

∞∑
k=0

1

pki
=

π(n)∏
i=1

pi
pi − 1

≤
π(n)∏
i=1

i+ 1

i
= π(n) + 1

5. By arranging inequalities, log(n) ≤ π(n) + 1. Since the natural logarithmic161

function is strictly increasing, the sequence generated by the π function162

diverges, which means that P is infinite.163

2.4 Fürstenberg’s Topological Proof164

Hillel Fürstenberg introduced this elegant proof as a 12-line note in the section165

on Mathematical Notes of the American Mathematical Monthly in 1995 [12].166

This non-traditional approach builds a topology [20] on integer numbers. The167

structure of this proof can be divided into the following parts.168

1. Given a, b ∈ Z, where b > 0, define the family of sets Na,b = {a + bn : n ∈169

Z, b > 0}.170

2. A set O ⊆ Z is called open whether O = ∅ or for every element a ∈ O, there171

exists some b ∈ Z, b > 0 with Na,b ⊆ O. As usual in topology, a closed set is172

defined as a complement of an open set in Z.173

3. By definition, the union of two open sets O1 ∪O2 is another open set. Also,174

the intersection of two open sets is also an open set: if a ∈ O1∩O2, thus there175

exist b1 > 0 and b2 > 0, such that Na,b1 ⊆ O1 and Na,b2 ⊆ O2; consequently,176

Na,b1b2 ⊆ O1 ∩O2. Therefore, such open sets induce a well-defined topology.177
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4. For any a, b ∈ Z, b > 0, Na,b is open. Also, notice that Na,b = Z\
⋃b−1

i=1 Na+i,b.178

Since Na,b is the complement of the open set
⋃b−1

i=1 Na+i,b, thus Na,b is a179

closed set.180

5. If O is a nonempty open set then O is infinite, since Na,b ⊆ O for some b > 0.181

6. Every n ∈ Z \ {−1, 1} has a prime divisor p, which implies that n ∈ N0,p.182

Consequently, Z \ {−1, 1} =
⋃

p∈P N0,p.183

7. If P is finite, then Z\{−1, 1} is a closed set since it is a finite union of closed184

sets, as pointed out above. Consequently, {−1, 1} is an open set, which is a185

contradiction since all open sets in this topology are infinite.186

2.5 Prime Reciprocal Harmonic Series187

The sixth and last proof was originally proved by Paul Erdös in the 20th cen-188

tury [10] and can be viewed as inspired by the proof found in Section 2.3. The189

main idea is to consider another series of reciprocal numbers, but instead of us-190

ing the positive integers, the prime numbers are used, i.e.,
∑n

i=1
1
pi

. As a finite191

summation of numbers converges, if this series diverges, the set of primes must192

be infinite.193

In this proof, the set of primes is divided into two types: the Small primes,194

which are smaller or equal to a prime pk, and Big primes, the remaining ones.195

From this classification, other sets are defined: N(n), the set of positive numbers196

less than or equal to n; Ns(n, k), the numbers from N(n) with only Small prime197

divisors; Nb(n, k) the numbers from N(n) with at least one Big prime divisor.198

It can be shown that N(n) = Ns(n, k) ∪Nb(n, k).199

1. Consider a prime enumeration pi and suppose that the series
∑N

i=1
1
pi

con-200

verges. Therefore exists a κ such that
∑∞

i=κ+1
1
pi

< 1
2 .201

2. Define Ndiv(d, n) the subset of N(n) whose elements are multiples of d ∈
N, d ≥ 1. It can be proven that |Ndiv(d, n)| = ⌊ |N(n)|

d ⌋ = ⌊n
d ⌋. Noticing that

Nb(n, k) is the union of all Ndiv(pi, n), where i > k, one can estimate the
size of Nb(n, κ) by:

|Nb(n, κ)| ≤
∞∑

i=κ+1

⌊
n

pi

⌋
≤

∞∑
i=κ+1

n

pi
<

n

2

3. An element m ∈ Ns(n, k) can be written as m = a·b, where a, b ∈ Ns(n, k), a
is a square-free part of m, and b is a perfect square of an element of Ns(n, k).
From this observation, two other sets are defined: Sfree(n, k), composed
of all elements a, and Sdiv(n, k), composed of all elements b. With these
considerations, the size of Ns(n, k) is estimated:

|Ns(n, k)| ≤ |Sfree(n, k)× Sdiv(n, k)| = |Sfree(n, k)| · |Sdiv(n, k)|

4. Since m = a ·b for all m ∈ Ns(n, k), the number of elements of Sdiv(n, k) can202

be estimated by setting a = 1 and using the definition of b, i.e. b = r2 for203

r ∈ Ns(n, k). Finding the size of Sdiv(n, k) turns into a problem of counting204

the numbers of valid m = r2. Noticing that Ns(n, k) ⊆ N(n), one can205

establish: |Sdiv(n, k)| ≤
√

|Ns(n, k)| ≤
√

|N(n)| =
√
n206
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5. An element of Sfree(n, k) is of the form m = pϵ11 ·pϵ22 · · ·pϵkk , where ϵi ∈ {0, 1}.207

Consequently, |Sfree(n, k)| ≤ 2k.208

6. Since N(n) = Ns(n, k) ∪Nb(n, k), for every k, one concludes that:

|N(n)| ≤ |Ns(n, κ)|+ |Nb(n, κ)| < 2κ
√
n+

n

2

7. In particular, if n = 22κ+2 then |N(n)| < 22κ+2 = n, which is a contradiction,209

since |N(n)| = n. Therefore, the original consideration of the convergence of210

a series of prime reciprocals must be false. That’s only possible if there are211

infinitely many primes.212

3 Description of the Formalization213

Only the formalization of the proofs based on Mersenne Numbers and on the214

Euler Product Formula are detailed since they required much more effort than215

what was expected given the traditional proofs. The formalization based on the216

Harmonic Prime Reciprocal Series æ presented the most significant divergences217

from the informal proof. On the contrary, it was possible to develop a formaliza-218

tion fairly close to the manual proofs for the ones based on Fermat Numbers æ219

and on Fürstenberg’s topological arguments æ .220

Before diving into the details, it is worth noticing the main building blocks on221

which this effort is founded. In addition to the PVS prelude and basic NASALib222

libraries such as set and structures, the presented formalization leverages223

specialized results from the NASALib libraries algebra, topology, series, and224

analysis. Notably, the concepts of topological spaces and relations between225

open and closed sets were taken from the library topology. Some properties226

about limits and integrals were imported from the analysis library. The series227

library provided properties about convergence of (infinite) series. Finally, from228

the algebra library, results related to (finite) groups and cosets were used. As229

an original contribution to these libraries, several results were added, such as a230

reformulation of the Fundamental Theorem of Arithmetic and a version of the231

Cauchy Product Theorem, among others.232

3.1 Mersenne Numbers233

The first design decision addressed how to specify the multiplicative group Zp \234

{0}, where p is a prime number. Although there is a specification for the ring235

Z/nZ æ , there exists no direct implementation for the multiplicative group236

Z/nZ \ {nZ}. The group-related theorems that were applied belong to theories237

that rely on the following assumption: the set of all elements of an abstract238

type T must satisfy a group predicate æ . In other words, the importation of239

these theories introduces a Type Correctness Condition (TCC) automatically240

generated by the system, which is a proof obligation for checking whether the241

type T consists of a complete set of elements forming a group. This is not a direct242

application of the lemma Zp_prime_is_field æ , already in NASALib, stating243

https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_harmonic_prime.pvs/
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_Fermat.pvs/
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_Fermat.pvs/
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_Fermat.pvs/
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_topology.pvs/
https://github.com/nasa/pvslib/blob/master/algebra/algebra_examples/ring_zn.pvs/
https://github.com/nasa/pvslib/blob/master/algebra/finite_groups.pvs/#L19-L19
https://github.com/nasa/pvslib/blob/master/algebra/algebra_examples/ring_zn.pvs/#L110-L111
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that Z/pZ is a field when p is a prime number and thus, that Z/pZ \{pZ} forms244

a group under multiplication. Indeed, the specification of field in the theory245

field_def æ , from a division ring æ , gives the flexibility of considering the246

set of cosets of nZ in Z as a parameter in the lemma Zp_prime_is_field æ247

, without excluding the identity for addition nZ. To use the results in theory248

finite_groups, it was necessary to specify the type nz_coset(n) æ and then249

prove that it satisfies the group properties when n is a prime number æ .250

Roughly, it could be done by using the lemma Zp_prime_is_field combined251

with enough expansions of the definition of group?[nz_coset(n)](Z(n)) in the252

lemma nz_prime_is_group æ .253

Still, some TCCs appeared during the manipulation of elements of type254

nz_coset(p); for this reason, additional utility lemmas were proved and sepa-255

rated in the ring_zn_extra.pvs file, as they could be used in more general256

situations. The content of this file ranges from lemmas of equivalence of the257

operations in Zn and Z/nZ to some direct ring properties, such as product and258

summation closure, and the characteristic of the ring Zp being p.259

It is worth mentioning that some type-related proofs can be avoided; instead260

of using generic definitions such as the power function specified in the group261

file, it is possible to define a specialized function for handling this new nz_coset262

type. This could be done by forcing the type to be nz_coset instead of the263

PVS-deduced coset type. For example, the signature of the power function was264

restricted to pow : Z/pZ \ {pZ} × Z≥0 → Z/pZ \ {pZ} æ instead of using the265

more general version pow : Z/pZ × Z≥0 → Z/pZ.266

After the explanation of these preliminaries, the actual proof of the infinitude267

of prime numbers can be finally discussed.268

Lemma 1. æ If d is a divisor of Mp where p ∈ P, then d is odd269

Proof. Since p is a prime number, p ≥ 2, implying that Mp = 2 · 2p−1− 1 is odd.
Suppose that d is even. Since it is a divisor of Mp,

Mp = d · k1, k1 ∈ Z

By the evenness of d
Mp = 2 · k2 · k1, k2 ∈ Z

This is a contradiction since Mp is odd.270

Lemma 2. æ Let q, p ∈ P, where q is a divisor of Mp, then

(2 + qZ)q−1 = 1 + qZ

Proof. By Lemma 1, q is an odd number since q is a prime q ≥ 3; in particular,
this means that q ̸| 2. By Fermat’s Little Theorem

2q−1 ≡ 1(mod q)

⇒ (2 + qZ)q−1 = 1 + qZ

The last equation comes from the ring isomorphism Z/nZ ∼= Zn.271

https://github.com/nasa/pvslib/blob/master/algebra/field_def.pvs/
https://github.com/nasa/pvslib/blob/master/algebra/division_ring_def.pvs/
https://github.com/nasa/pvslib/blob/master/algebra/algebra_examples/ring_zn.pvs/#L110-L111
https://github.com/nasa/pvslib/blob/master/algebra/algebra_examples/ring_zn.pvs/#L110-L111
https://github.com/nasa/pvslib/blob/master/algebra/algebra_examples/ring_zn.pvs/#L110-L111
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_groups.pvs/#L50-L50
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_groups.pvs/#L76-L78
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_groups.pvs/#L73-L75
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/ring_zn_extra.pvs
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_groups.pvs/#L65-L66
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_groups.pvs/#L97-L98
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_groups.pvs/#L100-L102
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In the PVS specification, the equivalence in the modular arithmetic formu-272

lation and quotient ring formulation was proved directly æ . It was also neces-273

sary to adapt Fermat’s Little Theorem to the requirements in the proof: it was274

specified in the ap ≡ a (mod p) form, not in the ap−1 ≡ 1 (mod p) form. The275

adaptations resulted in the file Fermats_little_theorem_extra.pvs.276

Lemma 3. æ Let q, p ∈ P, where q is a divisor of Mp, then

(2 + qZ)p = 1 + qZ

Proof. Since q divides Mp,
Mp ≡ 0 (mod q)

2p − 1 ≡ 0 (mod q)

2p ≡ 1 (mod q)

Using the isomorphism Z/nZ ∼= Zn.

(2 + qZ)p = 1 + qZ

Theorem 1. æ There are infinitely many primes277

Proof. Suppose there exists a finite amount of prime numbers, then there should
exist a maximum prime pmax. Let q ∈ P be the divisor of Mpmax

. Using Lemma
3,

(2 + qZ)pmax = 1 + qZ.

In particular, from the definition of order, it follows that ord(2+qZ) | pmax, but278

that is only possible if ord(2+qZ) = 1 or ord(2+qZ) = pmax. If ord(2+qZ) = 1,279

then 2 + qZ = 1 + qZ, which is not possible since q > 1. Therefore, it must be280

the case that ord(2 + qZ) = pmax.281

Using Lemma 2,
(2 + qZ)q−1 = 1 + qZ.

Again, by definition of order, ord(2 + qZ) | q − 1 and pmax | q − 1. Since282

a divisor is smaller or equal to the number it divides, pmax ≤ q − 1. More283

specifically, pmax < q. Therefore, q is a prime greater than the maximum prime,284

a contradiction.285

It turns out that Lagrange’s Theorem was not necessary. In fact, if it had been286

used, it would have been necessary to proof additional lemmas on group orders,287

but these proofs can be quite tedious. Instead, the following classical theorem288

was used: if an element a from a group G satisfies an = 1 for some integer n, then289

ord(a) divides n. This theorem was not in the NASALib Algebra library as such,290

so it was proved and added in its own separate file finite_group_extra.pvs.291

Related to TCCs, since the definition of structures in the NASALib’s al-292

gebra library, such as ring, is built upon the group definition, and these upon293

monoid (and so on), type dependencies become an exhaustive issue. The problem294

arises because they require a significant number of TCCs. If such structures are295

https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/ring_zn_extra.pvs/#L30-L32
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/fermats_little_theorem_extra.pvs
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_groups.pvs/#L104-L106
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_groups.pvs/#L108-L109
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/finite_groups_extra.pvs
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imported naively, each new algebraic structure used in a proof could generate296

around five new TCCs. Consequently, there is room for improvement in the alge-297

bra library from various angles, such as through new utility theorems, new proof298

strategies (conservative extensions of the proof calculus provided by PVS), and299

possibly type judgments, which provide more information to the type checker.300

Nevertheless, the algebra library contains many powerful theorems, including301

classic results from group and ring theory like Lagrange’s Theorem, Sylow’s302

Theorems, and many others, some of which facilitated the presented work.303

3.2 Formalization Based on Euler Product Formula and Cauchy304

Equality305

The fourth proof in “THE BOOK” relies on analytic number theory [2]. As a306

side effect of the Euler’s Formula [11], proved in the 18th century by Leonhard307

Euler, this proof has a deep connection to the Riemann zeta function [24]. The308

key idea is to show that the zeta function can be factored into a product over309

primes. With this connection, the estimation for the number of primes can be310

as large as desired, confirming that primes are indeed infinite.311

The Riemann-zeta function is defined as:312

ζ(s) =

∞∑
n=1

1

ns
for s ∈ C, Re(s) > 1

The Euler’s product formula, on the other hand, relates the primes in the313

following way:314

ζ(s) =
∏

p prime

(
1− 1

ps

)−1

for s ∈ C, Re(s) > 1

Notice that, from the definition of zeta function, s must have real part greater315

than one. It turns out that this Euler product also works for s = 1, but the zeta316

function at this value tends to infinity, something that should not happen if there317

are finite primes.318

In particular, it is possible to estimate the prime-counting function by the319

product of the primes according to the Euler formula, which by itself can be320

bounded using the natural logarithm function in the following way:321

log(n) ≤
∏

p prime

(
1− 1

p

)−1

≤ π(n) + 1

where log(n) is the natural logarithm function and π(n) is the function that322

counts the number of prime numbers less than or equal to a given number n.323

As is typical in traditional number theory proofs, this proof heavily relies324

on concepts from analysis, such as limits and series, which are addressed in325

NASALib Analysis library [15].326

https://github.com/nasa/pvslib/tree/master/analysis
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3.2.1 Prime enumeration The notation P = {p1, p2, p3, . . .} in [1] has the327

problem of assuming that the set of prime numbers P is infinite beforehand, and328

the sequence should be undefined otherwise. For simplicity, in the specification,329

the starting index is zero, and the undefined cases are set to the number zero,330

meaning that if the prime numbers have an end at the nth value, then pi = 0 for331

i ≥ n. Therefore, p0 = 2 p1 = 3 p2 = 5. The proper definition of the prime332

sequence is given by a function ρ : Z≥0 → Z≥0 æ . It remains to prove that333

for a subset of the domain, S ⊆ Z≥0, this function is an enumeration. For this334

purpose, some necessary properties are inductively formalized, such as:335

1. æ ρ(i+ 1) > ρ(i) ∨ ρ(i+ 1) = 0336

2. æ ∀ρ(i), ρ(j) ∈ P, ρ(i) = ρ(j) ⇒ i = j337

3. æ ∀p ∈ P,∃i ∈ Z≥0, ρ(i) = p338

4. æ Let i, n ∈ Z≥0, i < π(n) ⇒ ρ(i) ∈ P339

The ρ function is indeed an enumeration for a subset of the domain. If there340

are infinitely many primes, all primes will appear in ascending order in the341

domain Z≥0. Otherwise, for the domain S = {n ∈ Z≥0 : n < π(pmax)}, all342

primes will also appear in ascending order, and in its complement, Z≥0 \ S, the343

function will be zero.344

In the following proofs, it will be necessary to use the Fundamental Theorem345

of Arithmetic [13]. This theorem is in NASALib æ , but specified in a generic346

manner: any natural greater than one can be written as a product of a prime347

sequence, for example, 360 = 2·3·2·5·2·3. For the current purposes, a specialized348

version of this theorem was formalized that states that each natural greater than349

one can be written as a product of a sequence of sorted powers of primes, for350

instance, 360 = 2 · 3 · 2 · 5 · 2 · 3. But for this formalization, it is convenient to use351

this theorem in the form of sorted powers of primes, for instance 360 = 23 ·32 ·5.352

Because a prime enumeration was already specified, it can be used to spec-353

ify the prime powers in sorted form. Still, knowing beforehand that there are354

infinitely many primes, one should be tempted to describe the Fundamental355

Theorem as the existence of the infinite product, with large enough terms hav-356

ing exponent zero, such as 360 = ρ(0)3 · ρ(1)2 · ρ(2)1 · ρ(3)0 · ρ(4)0 . . . . However,357

this would lead to the same mistake of assuming that there are infinitely many358

primes circularly. Therefore, a new version of the Fundamental Theorem was359

formalized.360

Given a family of sets Ep = {n ∈ Z : ∃k ∈ Z≥0, n = pk}, where p ∈ P, the
set Dn can be defined as the finite Cartesian product shown below æ .

Dn =×π(n)−1

i=0 Eρ(i)

Thus, the Fundamental Theorem can be rewritten as the existence of a unique361

element (ρ(0)ϵ0 , ρ(1)ϵ1 , . . . , ρ(π(n) − 1)ϵπ(n)−1) ∈ Dn, such that the product of362

its entries æ equals n for every n ∈ Z, n > 1; i.e., æ363

n =

π(n)−1∏
i=0

ρ(i)ϵi

https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/prime_extra.pvs/#L12-L18
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/prime_extra.pvs/#L31-L34
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/prime_extra.pvs/#L51-L53
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/prime_extra.pvs/#L55-L56
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/prime_extra.pvs/#L75-L83
https://github.com/nasa/pvslib/blob/master/numbers/prime_factorization.pvs/
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/prime_extra.pvs/#L93-L95
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/prime_extra.pvs/#L128-L129
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/prime_extra.pvs/#L160-L164
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Since the greatest prime divisor of a number is the number itself, the upper364

limit of the product, π(n)− 1, guarantees that all prime divisors will appear in365

the product.366

It is worth mentioning that the definition of prime enumeration and prime367

factorization is reused for the formalization based on prime reciprocal series (Sub-368

section 2.5); because of that, these proofs, alongside another general purpose ρ369

function manipulation, were separated to a new file called prime_extra.pvs. Ad-370

ditionally, using this new framework for the proof of the Fundamental Theorem371

of Arithmetic, the application of lemmas related to integers was useful. Among372

these lemmas, some properties related to the gcd function were not available in373

NASALib. For that reason, another file was created number_util.pvs.374

3.2.2 A few inequalities For the completion of the proof, a few inequalities375

must be proven, starting from a classic one.376

Lemma 4. æ ∀n ∈ Z≥0, log(n) ≤ Hn377

Despite being well known, this inequality was not explicitly enunciated in378

NASALib, but all its prerequisites were already proven in the analysis library.379

This made its assisted proof relatively easy. The only small problem was a TCC380

related to the integrability of each integral expression required in the proof; as381

the summation is applied over slices of the bigger integral, it was necessary to382

guarantee that everything is indeed integrable. However, lemmas for these steps383

were also in the files defining the logarithmic function and integral operations.384

For the next inequality, two definitions of functions are given. At first glance,385

the defined functions appear to be different, but they are actually equivalent æ386

. Let n ∈ Z≥0, n ≥ 2387

ξ(n) =

π(n)−1∏
i=0

∞∑
k=0

1

ρ(i)k
µ(n) =

∑
k∈Z>0,

k=1 ∨ ∃p∈P,
(p≤n ∧ p|k)

1

k

One thing to notice is that in ξ, there are divisions by ρ(i), which can have388

zero value if one tries to use a nonexistent prime number, but as the product is389

taken from i = 0 to i = π(n) − 1, using property 4, all ρ(i) values are primes.390

Even though not completely obvious, these two functions are indeed the same.391

Some non-trivial lemmas must be proven first to formalize this fact.392

Given the Cauchy product [7], the product of two convergent series is another393

series.394 ( ∞∑
n=0

ai

)
·

( ∞∑
n=0

bi

)
=

∞∑
n=0

n∑
k=0

an−kbk (1)

This formula has the restriction of one of the series being absolutely conver-
gent, but the series in the formalization is defined over positive numbers, making
this restriction trivially valid. The last series in the formula can be flattened in

https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/prime_extra.pvs
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/number_util.pvs
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_Euler.pvs/#L33-L34
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_Euler.pvs/#L73-L80
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_Euler.pvs/#L73-L80
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_Euler.pvs/#L73-L80
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such a way that it maintains its convergence, but to prove this, first, two other
functions are defined. æ Let n ∈ Z≥0

θ(n) = max

({
k ∈ Z≥0 :

k(k + 1)

2
≤ n

})
τ(n) = n− θ(n)(θ(n) + 1)

2

Corollary 1. æ Let n, k ∈ Z≥0, 0 ≤ k ≤ n, then θ(n(n+1)
2 + k) = n and395

τ(n(n+1)
2 + k)=k.396

Lemma 5. æ Let n, k ∈ Z≥0, 0 ≤ k ≤ n, then397 ∑n
k=0 an−kbk =

∑n(n+1)
2 +n

k=
n(n+1)

2

a(θ(k)−τ(k)) · bτ(k).398

Lemma 6. æ Let N ∈ Z≥0, then399 ∑N
n=0

∑n
k=0 an−kbk =

∑N(N+1)
2 +N

n=0 a(θ(k)−τ(k)) · bτ(k).400

The next theorem requires formalizing one more lemma.401

Lemma 7. æ Let n ∈ Z≥0, there exist m, r ∈ Z≥0, with r ≤ m, and n =402

m·(m+1)
2 + r.403

Now, the flattened version of the series can be proved equal to the original404

series.405

Theorem 2. Let an and bn be positive sequences and
∑∞

n=0

∑n
k=0 an−kbk con-406

vergent. Then
∑∞

n=0

∑n
k=0 an−kbk =

∑∞
k=0 a(θ(k)−τ(k)) · bτ(k).407

Since there was no previous specification of the Cauchy product in PVS, its408

formalization was essential to obtain a complete theory.409

The series flattening process æ was generalized for the product of more410

series.411

Lemma 8. æ Let n ∈ Z>0, then412 ∏n−1
i=0

∑∞
k=0 ai(k) =

∑
k,jl∈Z≥0

j0+j1+...+jn−1=k

∏n−1
i=0 ai(ji).413

The equality of functions ξ and µ, used in the informal proof, can be obtained414

using Lemma 8 and the Fundamental Theorem of Arithmetic. However, in PVS,415

as this property was only needed in the next lemma, it was faster to associate416

each term directly in the next proof instead of stating this equality as a separate417

PVS lemma.418

Lemma 9. æ Let n ∈ Z>0, Hn ≤ µ(n)419

Proof. From the definition of the µ function, and since it is an absolutely con-
vergent series, if for every 1

k , 1 < k ≤ n, there exists a prime p | k, p ≤ n, the
series can be ordered as

µ(n) =

n∑
k=1

1

k
+

∑
k∈Z>n,

k=1 ∨ ∃p∈P,
(p≤n ∧ p|k)

1

k

https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/series_extra.pvs/#L28-L31
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/series_extra.pvs/#L33-L37
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/series_extra.pvs/#L39-L43
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/series_extra.pvs/#L45-L49
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/series_extra.pvs/#L25-L26
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_Euler.pvs/#L38-L47
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_Euler.pvs/#L49-L62
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_Euler.pvs/#L90-L92
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Which trivially results in Hn ≤ µ(n). To conclude, since 1 < k ≤ n and420

a divisor is less than or equal to the number it divides, all prime divisors of k421

satisfy the inequality p ≤ k. Therefore, the maximal prime divisor of k, say p, is422

such that p ≤ n.423

For the PVS formalization, such a series rearrange needed to be expressed424

in a more explicit form; for that reason, a theory called sequence_extra.pvs425

was included, in which a constructive specification of the function that orders426

by common summed values is given.427

Lemma 10. æ Let n, i ∈ Z≥0, for i < π(n), ρ(i)
ρ(i)−1 ≤ i+2

i+1428

Proof. Notice that ρ(i)
ρ(i)−1 ≤ i+2

i+1 ⇐⇒ 1+ 1
ρ(i)−1 ≤ 1+ 1

i+1 ⇐⇒ i+1 ≤ ρ(i)−1429

⇐⇒ i+ 2 ≤ ρ(i).430

This is proved by induction. For i = 0, 0 + 2 ≤ 2; for i > 0, by i.h., i + 1 ≤431

ρ(i−1) ⇒ i+2 ≤ ρ(i−1)+1. By the property 4, ρ(i) ̸= 0, and using Lemma 1, it432

can be shown that ρ(i−1) < ρ(i). Since ρ(i−1) is an integer, ρ(i−1)+1 ≤ ρ(i);433

therefore, i+ 2 ≤ ρ(i).434

Lemma 11. æ ξ(n) ≤ π(n) + 1435

Theorem 3. æ There are infinitely many primes436

Proof. Composing the inequalities from Lemmas 4, 11 and 9, one obtains log(n) ≤437

ξ(n) = µ(n) ≤ π(n) + 1. Since the logarithm is a strictly increasing function,438

there is no maximum π(n) value.439

4 Conclusion440

The presented PVS library helps show mathematicians the potential of interac-441

tive theorem provers in formalizing complex mathematical concepts, showcasing442

that substantial and technically intricate proofs can be rigorously verified using443

computer software. The complete formalization of distinct proofs of the infini-444

tude of primes from the renowned book “Proofs from THE BOOK” contributed445

significantly to developing a rich and mathematically diverse library to attract446

the interest of researchers from various branches of mathematics.447

Table 1 shows a quantitative overview of the formalization effort.448

Table 1: Quantitative data.
PVS

theory Formulas TCCs
Specification

Size
(.pvs lines)

Proof
Commands
(.prf lines)

Main Dependencies
Prime
enum

Cauchy
Product Series Topology

(NASALib)
Algebra

(NASALib)
Num Theory

Extra
Fermat 17 8 75 981 ✓

Mersenne 28 17 112 2568 ✓ ✓

Euler 39 28 112 3408 ✓ ✓ ✓ ✓

Fürstenberg 19 2 115 1822 ✓ ✓

Erdös 71 35 273 8117 ✓ ✓ ✓

Additional Theories Quantitative Data
PVS theory Formulas TCCs Specification Size Proof Commands

Primes enumeration 65 37 212 4574
Cauchy product formula 21 10 111 2302

Series extra 23 8 109 1610
Others 89 51 419 5125

https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/sequence_extra.pvs
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_Euler.pvs/#L98-L100
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_Euler.pvs/#L106-L107
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_Euler.pvs/#L109-L110
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This work highlighted essential differences between the informal proofs and449

the formalizations. One key difference was the need to adjust the original proofs450

regarding prime enumeration. The original proofs assumed data structures in451

which the set of primes was infinite, a flaw given the level of rigor required in452

the formalization. To address such an imprecision, an enumeration function was453

defined in PVS that avoids assuming the infinitude of primes, ensuring a rig-454

orous foundation for the required adaptation of the Fundamental Theorem of455

Arithmetic. This result can be found in the file prime_extra.pvs. Furthermore,456

the strong typing features of PVS played a crucial role in highlighting the im-457

portance of distinguishing between different types of structures, particularly, for458

the proof using Mersenne numbers, where the type system helped clarify the459

relationships between the different algebraic structures involved. Although La-460

grange’s theorem was not used, the formalization leveraged a result about group461

orders, proving that the order of any group element satisfying a particular con-462

dition divides a given integer. Another key difference between the proof in “THE463

BOOK” and its formalization is using the Cauchy product to prove the Euler464

product. In “THE BOOK”, the Euler product’s connection to the harmonic se-465

ries was somewhat informal, which required more rigorous proof. As the Cauchy466

product was not formalized in NASALib, this allows for improving both the467

Analysis and the Series libraries.468

Also, distinguished features from PVS were crucial to guide the formaliza-469

tions, particularly in handling topology and number theory aspects. Fürsten-470

berger’s topological proof was straightforward due to the well-established PVS471

topology library. Similarly, the proof using Fermat numbers benefited from the472

comprehensive number theory library in the PVS prelude. All that, conjugated473

with the typing system and the ability to define custom functions, made it possi-474

ble to address the nuances of the infinitude of primes and formalize the proofs in a475

rigorous and structured manner while addressing the impressions and omissions,476

as well as determining proof alternatives simpler than those in the traditional477

proofs.478

Further expansions of the presented formalization can include additional479

proofs uncovered in “Proofs from THE BOOK,” particularly those exploring480

other branches of mathematics or offering alternative perspectives on well-known481

approaches. One area of interest could be the formalization of a geometry-related482

proof of the infinitude of primes, such as the given in [6], which would broaden483

the scope of the library beyond number theory, analysis, topology, and algebra.484

Additionally, incorporating more advanced results in number theory, such as485

Dirichlet’s Theorem on primes in arithmetic progressions, would be a valuable486

addition. In general, a key focus will also be improving the level of automation in487

PVS. For instance, leveraging algebraic manipulations for structures other than488

number fields (highly automated through the Manip package [25]), particularly489

in streamlining the process of formalizing proofs without obscuring essential490

mathematical reasoning steps.491

https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/prime_extra.pvs
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A Proofs for Section 3 (Description of the Formalization)555

Lemma 4. æ ∀n ∈ Z≥0, log(n) ≤ Hn556

Proof. This can be done by considering the inequality 1
x ≤ 1

k for x ∈ [k, k+1],
and the inequalities for finite summations of integrations:

log(n+ 1) =

∫ n+1

1

1

x
dx =

n∑
k=1

∫ k+1

k

1

x
dx ≤

n∑
k=1

∫ k+1

k

1

k
dx

Then, ⇒ log(n+ 1) ≤
∑n

k=1
1
k = Hn, and since log is an increasing function,557

log(n) ≤ Hn.558

Corollary 1. æ Let n, k ∈ Z≥0, 0 ≤ k ≤ n, then θ(n(n+1)
2 + k) = n and559

τ(n(n+1)
2 + k)=k.560

Proof. Since 0 ≤ k, n(n+1)
2 ≤ n(n+1)

2 + k. Also, since k ≤ n,

n(n+ 1)

2
+ k ≤ n(n+ 1)

2
+ n <

n(n+ 1)

2
+ n+ 1 =

(n+ 1)(n+ 2)

2

Therefore, by the definition of θ, one must have θ(n(n+1)
2 + k) = n, implying

that

τ

(
n(n+ 1)

2
+ k

)
=

n(n+ 1)

2
+ k −

θ
(

n(n+1)
2 + k

)(
θ
(

n(n+1)
2 + k

)
+ 1
)

2

=
n(n+ 1)

2
+ k − n(n+ 1)

2
= k

Lemma 5. æ Let n, k ∈ Z≥0, 0 ≤ k ≤ n, then561 ∑n
k=0 an−kbk =

∑n(n+1)
2 +n

k=
n(n+1)

2

a(θ(k)−τ(k)) · bτ(k).562

Proof. Using the Corollary 1, it holds that θ(n(n+1)
2 +k) = n and τ(n(n+1)

2 +k) =
k, therefore, by change of basis.

n(n+1)
2 +n∑

k=
n(n+1)

2

a(θ(k)−τ(k)) · bτ(k)

=

n∑
k=0

a(θ(n(n+1)
2 +k)−τ(n(n+1)

2 +k)) · bτ(n(n+1)
2 +k)

=

n∑
k=0

an−kbk

https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_Euler.pvs/#L33-L34
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/series_extra.pvs/#L33-L37
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/series_extra.pvs/#L39-L43
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Lemma 6. æ Let N ∈ Z≥0, then563 ∑N
n=0

∑n
k=0 an−kbk =

∑N(N+1)
2 +N

n=0 a(θ(k)−τ(k)) · bτ(k).564

Proof. By induction on N .565

Case N = 0, by Corollary 1, θ(0) = 0 and τ(0) = 0, therefore a0b0 =566

a(θ(0)−τ(0)) · bτ(0).567

Case N > 0, by i.h.
N+1∑
n=0

n∑
k=0

an−kbk

=

n+1∑
k=0

an−kbk +

N(N+1)
2 +N∑
n=0

a(θ(k)−τ(k)) · bτ(k).

Then, by Lemma 5, the last expression is equal to

(N+1)(N+2)
2 +N+1∑

k=
(N+1)(N+2)

2

a(θ(k)−τ(k)) · bτ(k) +

N(N+1)
2 +N∑
n=0

a(θ(k)−τ(k)) · bτ(k)

=

(N+1)(N+2)
2 +N+1∑
n=0

a(θ(k)−τ(k)) · bτ(k).

Lemma 7. æ Let n ∈ Z≥0, there exist m, r ∈ Z≥0, with r ≤ m, and n =568

m·(m+1)
2 + r.569

Proof. By induction on n.570

Case n = 0, m = r = 0 satisfy the equality.571

Case n > 0. By i.h., if r = m,

n+ 1 =
m · (m+ 1)

2
+m+ 1 =

(m+ 1)(m+ 2)

2
=

(m+ 1)[(m+ 1) + 1]

2
+ 0.

Otherwise, if r < m, n+ 1 = m·(m+1)
2 + (r + 1), and r + 1 ≤ m.572

Theorem 2. Let an and bn be positive sequences and
∑∞

n=0

∑n
k=0 an−kbk con-573

vergent. Then
∑∞

n=0

∑n
k=0 an−kbk =

∑∞
k=0 a(θ(k)−τ(k)) · bτ(k).574

Proof. It should be proved that
∣∣L−

∑n
k=0 a(θ(k)−τ(k)) · bτ(k)

∣∣ < ϵ, for every real575

ϵ > 0, for larger enough n ≥ N , where L =
∑∞

n=0

∑n
k=0 an−kbk.576

By rewriting n as m·(m+1)
2 + r, where 0 ≤ r ≤ m (Lemma 7), and using577

Lemma 6, the difference can be estimated as follows.578 ∣∣∣∣∣∣L−

m·(m+1)
2 +r∑
k=0

a(θ(k)−τ(k)) · bτ(k)

∣∣∣∣∣∣

https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/series_extra.pvs/#L45-L49
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/series_extra.pvs/#L25-L26


20 B.B.O. Ribeiro, M.M. Moscato, T.A. de Lima and M. Ayala-Rincón

=

∣∣∣∣∣∣∣L−

m·(m+1)
2 +m∑
k=0

a(θ(k)−τ(k)) · bτ(k) +

m·(m+1)
2 +m∑

k=
m·(m+1)

2 +r+1

a(θ(k)−τ(k)) · bτ(k)

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣L−

m·(m+1)
2 +m∑
k=0

a(θ(k)−τ(k)) · bτ(k)

∣∣∣∣∣∣+
∣∣∣∣∣∣∣

m·(m+1)
2 +m∑

k=
m·(m+1)

2 +r+1

a(θ(k)−τ(k)) · bτ(k)

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣L−

m·(m+1)
2 +m∑
k=0

a(θ(k)−τ(k)) · bτ(k)

∣∣∣∣∣∣+
∣∣∣∣∣

m∑
k=r+1

am−k · bk

∣∣∣∣∣ (By Cor. 1)

≤

∣∣∣∣∣L−
m∑

n=0

n∑
k=0

an−kbk

∣∣∣∣∣+
∣∣∣∣∣

m∑
k=r+1

am−kbk

∣∣∣∣∣ (By Lemma 6)

≤

∣∣∣∣∣L−
m∑

n=0

n∑
k=0

an−kbk

∣∣∣∣∣+
m∑

k=0

am−kbk (Since an and bn are positive sequences).

Since
∑∞

n=0

∑n
k=0 an−kbk is convergent, limn→∞

∑n
k=0 an−kbk = 0, implying579

that for every ϵ > 0, there exist N1 ≤ n,N2 ≤ n, such that580 ∣∣∣∣∣L−
m∑

n=0

n∑
k=0

an−kbk

∣∣∣∣∣ < ϵ

2
and

m∑
k=0

am−kbk <
ϵ

2
.

Therefore, for N = max(N1, N2),
∣∣L−

∑n
k=0 a(θ(k)−τ(k)) · bτ(k)

∣∣ < ϵ.581

Lemma 8. æ Let n ∈ Z>0, then582 ∏n−1
i=0

∑∞
k=0 ai(k) =

∑
k,jl∈Z≥0

j0+j1+...+jn−1=k

∏n−1
i=0 ai(ji).583

Proof. By induction on n. For n = 1, this trivially says that
∑∞

k=0 a0(k) =∑∞
k=0 a0(k). For n > 1, by i.h.,

n∏
i=0

∞∑
k=0

ai(k) =

( ∞∑
k=0

an(k)

)
·

 ∑
k,jl∈Z≥0

j0+j1+...+jn−1=k

n−1∏
i=0

ai(ji)


By Cauchy product (Formula 1),

=

∞∑
m=0

∑
jl∈Z≥0

j0+j2+...+jn=m

an(m− (j0 + j1 + . . .+ jn−1)) ·
n−1∏
i=0

ai(ji)

https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_Euler.pvs/#L49-L62
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=

∞∑
m=0

∑
jl∈Z≥0

j0+j2+...+jn=m

an(jn) ·
n−1∏
i=0

ai(ji) =

∞∑
m=0

∑
jl∈Z≥0

j0+j2+...+jn=m

n∏
i=0

ai(ji)

=
∑

k,jl∈Z≥0

j1+j2+...+jn=k

n∏
i=0

ai(ji).

The last equality uses the flattening process of Theorem 2.584

Lemma 11. æ ξ(n) ≤ π(n) + 1585

Proof. Since the geometric series has a closed form, ξ(n) can be simplified as
shown below.

π(n)−1∏
i=0

∞∑
k=0

1

ρ(i)k
=

π(n)−1∏
i=0

ρ(i)

ρ(i)− 1
≤

π(n)−1∏
i=0

i+ 2

i+ 1

The last inequality is obtained using Lemma 10. Notice that the last expression586

is a telescoping product æ , therefore,
∏π(n)−1

i=0
i+2
i+1 = (π(n)−1)+2

0+1 = π(n) + 1.587

https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_Euler.pvs/#L106-L107
https://github.com/AngryLeaderBB/The_Book_primes_PVS/tree/cauchy_product/inf_prime_Euler.pvs/#L94-L96
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