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Abstract. This paper discusses the formalization in PVS of diverse
proofs of the infinitude of primes. These proofs are developed using tech-
niques from various areas of mathematics, including set theory, algebra,
analysis, number theory, and topology. The availability of such a variety
of proofs is helpful as a didactic resource, aiming to encourage mathe-
maticians working in different areas to adopt interactive theorem provers
as one of their everyday tools. The presented collection of formalizations
follows the proofs selected by Erdös, Aigner, and Ziegler in their famous
work “Proofs from THE BOOK,” namely those based on Fermat num-
bers, Mersenne numbers and algebraic structures, topological properties,
and the analysis of harmonic series. The paper discusses the differences
between informal proofs and mechanical formalization, highlighting the
usefulness of distinguishing features of PVS to guide and facilitate the
presented mechanization.
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1 Introduction

Euclid’s proof of the infinitude of primes [4] is a classic and highly illustrative
result. As the concept of primality is typically presented in introductory math
courses, this proof offers an excellent example of approaching problems involving
infinity. Over the years, many mathematicians, such as Paul Erdös, have provided
new proofs of this result, each drawing from different areas of mathematics.
These proofs are not only valuable for showcasing the tools offered by such
diverse fields, but they also serve as a reminder that mathematics is a profoundly
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interconnected discipline, where concepts and techniques from diverse branches
often come together to solve fundamental problems.

In the context of formalizing mathematical knowledge, proof assistants offer
invaluable tools to ensure rigor and correctness. They provide a structured and
reliable approach to formalizing and verifying logical reasoning, ensuring that
the proof is free of errors, ambiguities, and gaps. This work presents five alter-
native proofs of the infinitude of primes using the Prototype Verification System
(PVS) [26]. These formalizations explore various proof techniques derived from
different areas of mathematics, including algebra, number theory, topology, and
analysis. Each proof is constructed carefully to ensure logical consistency and
rigor. The proofs are derived from those in “Proofs from THE BOOK” by Martin
Aigner and Günter Ziegler [1], which offer six different proofs. Euclid’s classi-
cal proof, the first in the mentioned book, is omitted here as it is already part
of the NASA PVS Libraries, NASALib4. The presented mechanization relies
on results from diverse libraries, including those from NASALib and the PVS
prelude. NASALib offers valuable abstractions for mathematical structures, in-
cluding sets, groups, and Cartesian products.

Notably, this work does not assume the infinitude of primes beforehand, as
circular reasoning is not accepted by proof assistants such as PVS. This kind
of circularity can arise inadvertently in manual theorem proving when using a
result much stronger than necessary. A notable example is the use of the Gödel
Completeness Theorem [18] to prove the Compactness Theorem. In “Proofs from
THE BOOK,” notation such as p1, p2, p3, . . . is used for prime enumeration, but
notice that this type of notation assumes the infinitude of primes beforehand.

One key aspect of this study is the identification and correction of notational
errors and informalities in “Proofs from THE BOOK.” PVS’s robust type system
helped to highlight and address these flaws, ensuring the proofs are precise and
rigorous. Moreover, this work emphasizes the educational value of using PVS to
formalize mathematical proofs. By breaking down the proofs into step-by-step
procedures, this work not only demonstrates various formal proof techniques but
also serves as a pedagogical resource. It offers readers the opportunity to learn
how to structure and validate proofs within a proof assistant, fostering a deeper
understanding of formal methods in mathematics. Thus, the mechanization of
these proofs serves both as a study of mathematical reasoning and as a guide to
using proof assistants effectively in diverse mathematical contexts.

1.1 Related Work

A significant number of the needed theorems for fields such as algebra, number
theory, analysis, and topology are already available as PVS formalizations in
NASALib [7,19,23]. These theorems were imported when the code was initially
set up, which significantly streamlined the work. This allows for a solid foun-
dation, avoiding the need to prove basic results and instead focusing on more
advanced or specific aspects of the problem at hand.
4 https://github.com/nasa/pvslib/blob/master/numbers/infinite_primes.pvs.

https://github.com/nasa/pvslib/blob/master/numbers/infinite_primes.pvs
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Euclid’s classic proof of the infinitude of primes has been formalized in var-
ious proof assistants, each presenting different approaches. One notable collec-
tion of such formalizations can be found in the “Formalizing 100 Theorems”
project [31], which references formalizations on eleven different proof assistants.
The usual strategies employed in these formalizations often revolve around two
key techniques. One approach uses the product of primes plus one variant of
Euclid’s proof, as seen in proofs formalized in systems like Naproche [21] and
the NASALib itself. The other approach employs a factorial plus one method,
which is used in the Isabelle/HOL and Coq proofs.

In addition to the classical Euclid’s proof of the infinitude of primes, other
proofs have been developed using different proof assistants, such as those found in
Isabelle. Such proofs are Fürstenberg’s topological proof [13] and another involv-
ing the zeta function [12]. The former formalization imports the Isabelle HOL
theories for reals, number theory, and analysis, and in addition to the formal-
ization of Fürstenberg’s proof, includes also proof of properties of Fürstenberg’s
topology. However, the topology-based proof of the infinitude of primes is ele-
mentary to formalize, as it relies on fewer mathematical structures compared to
other proofs in “Proofs from THE BOOK” (“THE BOOK,” for short). Indeed,
Fürstenberg’s proof requires essentially few basic notions of topological spaces,
set theory, and number theory, leaving less room for alternative approaches. As
a result, the existing formalizations differ primarily in how they are handled by
different proof assistants, rather than in the structure of the proof itself. For
didactic matters, the current formalization of Fürstenberg’s proof imports the
topology library and the minimum necessary notions from NASALib. On the
other hand, the proof using the zeta function employs the Euler Product and
the Cauchy Equality. It is presented in “THE BOOK,” and also covered in the
current formalization. The formalization in [12] presents a significant divergence
regarding “THE BOOK.” It employs a more complex approach that utilizes the
analytic continuation of the zeta function and then leverages the divergence at
s = 1 to prove the infinitude of primes. In contrast, the current formalization
follows a pedagogical approach, also importing the minimum necessary PVS li-
braries on series and reals. However, some non-trivial results assumed in “THE
BOOK,” such as the Cauchy Equality, were mechanized to obtain a complete
formalization of this proof.

While the primary focus of this paper is on the first topic of “THE BOOK,”
which addresses the infinitude of primes, it is also worth noting that there are
other formalizations in “THE BOOK” beyond this first topic. These include
proofs of the irrationality of certain numbers [27] and Fermat’s two-square the-
orem [9].

1.2 Main Contributions

The main contributions of this work are:

– The formalization in PVS of five additional proofs for the infinitude of
primes, which can be presented as applications of the results from various
NASALib’s libraries, such as ints, algebra, analysis, and topology.
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– The discussion and formalization of omitted details in “THE BOOK.”
– A new approach for the standard prime factorization theorem in NASALib

and general structure specification.
– Several improvements in the algebra library, such as the Z/pZ coset ma-

nipulation and type-checking related problems.
– Minor improvements in the manipulation of integer expressions in PVS, es-

pecially related to the gcd function.

1.3 Organization

Section 2 sketches the informal proofs that guide the formalization presented
in this paper. Section 3 discusses aspects of the formalizations, focusing on the
two more interesting proofs in terms of the usage of distinguishing typing fea-
tures provided by PVS and the level of difficulty involved in their mechanical
verification. Section 4 concludes the paper by providing some final remarks, also
providing quantitative data, and discussing possible lines of future work. The
paper includes hyperlinks to specific points of the formalization using the sym-
bol . The complete formalization is available at https://github.com/nasa/
pvslib/tree/master/ints/inf_primes. An extended version of this work in-
cludes more detailed information on the proofs and the PVS formalization [25].

2 Brief Description of the Informal Proofs

This section provides a brief description of the proofs addressed in the presented
formalization. In the following, the set of prime numbers is denoted by P.

2.1 Fermat Numbers

The second proof detailed in [1] uses number theory [20]. More precisely, it uses
the infinitude of the Fermat numbers [28]. The Fermat numbers are of the form:

Fn = 22
n

+ 1, where n ∈ Z≥0.

The main idea guiding the proof is to show that Fermat numbers are pairwise
relatively prime. In other words, each Fermat number must have at least one
distinct prime divisor. Since it is possible to find infinitely many Fermat numbers,
it follows that there must be infinitely many prime numbers. Since NASALib and
the PVS prelude provide a strong set of theorems in number theory, this proof
turned out to be one of the shortest.

2.2 Mersenne Numbers

The third proof uses the Mersenne numbers [28], which are defined as Mn =
2n − 1, n ∈ Z≥0. In this proof, n is restricted to the set of prime numbers and
is denoted by p. The main idea of the proof is to show that there exists a prime

https://github.com/nasa/pvslib/tree/master/ints/inf_primes
https://github.com/nasa/pvslib/tree/master/ints/inf_primes
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divisor q of Mp such that q is greater than p. If there were finite primes, there
must exist a maximum prime pmax. This is a contradiction since one can find a
greater prime in the set of divisors of Mpmax .

The approach followed in “Proofs from THE BOOK” is based on abstract
algebra, the application of Lagrange’s Theorem [22], and the fact that Zq \ {0}
is a group under multiplication. The proof is structured as described below.

1. Let p be an arbitrary prime and q be one prime factor of Mp = 2p−1. Notice
that q must be odd since 2p − 1 is odd.

2. Since q divides 2p − 1, this implies that 2p ≡ 1(mod q). The number p is a
prime; thus, it must be the order of the element 2 in Zq \ {0}. Otherwise,
there would be r ∈ N, 1 < r < p, which divides p.

3. An element a ∈ Zq \{0} of order n generates a subgroup ⟨a⟩ = {ai : i ∈ Z≥0}
with cardinality |⟨a⟩| = n. By applying Lagrange’s Theorem, |⟨2⟩| = p divides
|Zq \ {0}| = q − 1.

4. Assume there exists a maximum prime pmax. Thus, there exists q ∈ P such
that pmax | q − 1. Consequently, pmax ≤ q − 1, and pmax < q, which is a
contradiction. Therefore, there are infinitely many primes.

2.3 Euler Product Formula and Cauchy Equality

The structure of the manual proof can be divided into the following steps.

1. Let π(n) be the prime-counting function that counts the number of prime
numbers smaller than or equal to n. Suppose there exists an enumeration of
P in increasing order.

2. The harmonic numbers can be underestimated with natural logarithms as

log(n) ≤ Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

3. The product of a geometric series of inverse prime numbers less than or equal

to n is equal to another series that contains every
1

k
from Hn = 1+

1

2
+. . .+

1

n
:

Hn ≤
π(n)∏
i=1

∞∑
k=0

1

pki
=

∑
k∈Z>0,

k=1 ∨ ∃p∈P,
(p≤n ∧ p|k)

1

k
.

4. For each prime number pi, the geometric series
∞∑
k=0

1

pki
converges to

pi
pi − 1

.

Also, pi ≥ i+ 1, which implies that
pi

pi − 1
≤ i+ 1

i
. Consequently,

π(n)∏
i=1

∞∑
k=0

1

pki
=

π(n)∏
i=1

pi
pi − 1

≤
π(n)∏
i=1

i+ 1

i
= π(n) + 1.

5. By arranging inequalities, log(n) ≤ π(n) + 1. Since the natural logarithmic
function is strictly increasing, the sequence generated by the π function
diverges, which means that P is infinite.
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2.4 Fürstenberg’s Topological Proof

Hillel Fürstenberg introduced this elegant proof as a 12-line note in the section
on Mathematical Notes of the American Mathematical Monthly in 1995 [16].
This non-traditional approach builds a topology [24] on integer numbers. The
structure of this proof can be divided into the following parts.

1. Given a, b ∈ Z, where b > 0, define the family of sets Na,b = {a + bn : n ∈
Z, b > 0}.

2. A set O ⊆ Z is called open whether O = ∅ or for every element a ∈ O, there
exists some b ∈ Z, b > 0 with Na,b ⊆ O. As usual in topology, a closed set is
defined as the complement of an open set in Z.

3. By definition, the union of two open sets O1 ∪O2 is another open set. Also,
the intersection of two open sets is also an open set: if a ∈ O1∩O2, thus there
exist b1 > 0 and b2 > 0, such that Na,b1 ⊆ O1 and Na,b2 ⊆ O2; consequently,
Na,b1b2 ⊆ O1 ∩O2. Therefore, such open sets induce a well-defined topology.

4. For any a, b ∈ Z, b > 0, Na,b is open. Also, notice that Na,b = Z \
b−1⋃
i=1

Na+i,b.

Since Na,b is the complement of the open set
b−1⋃
i=1

Na+i,b, thus Na,b is a closed

set.
5. If O is a nonempty open set then O is infinite, since Na,b ⊆ O for some b > 0.
6. Every n ∈ Z \ {−1, 1} has a prime divisor p, which implies that n ∈ N0,p.

Consequently, Z \ {−1, 1} =
⋃
p∈P

N0,p.

7. If P is finite, then Z\{−1, 1} is a closed set since it is a finite union of closed
sets, as pointed out above. Consequently, {−1, 1} is an open set, which is a
contradiction since all open sets in this topology are infinite.

2.5 Prime Reciprocal Harmonic Series

Paul Erdös originally proved the sixth and last proof in the 20th century [14]
and can be viewed as inspired by the proof found in Section 2.3. The main
idea is to consider another series of reciprocal numbers, but instead of using the

positive integers, the prime numbers are used, i.e.,
n∑

i=1

1

pi
. As a finite summation

of numbers converges, if this series diverges, the set of primes must be infinite.
In this proof, the set of primes is divided into two types: the Small primes,

which are smaller or equal to a prime pk, and Big primes, the remaining ones.
From this classification, other sets are defined: N(n), the set of positive numbers
less than or equal to n; Ns(n, k), the numbers from N(n) with only Small prime
divisors; Nb(n, k) the numbers from N(n) with at least one Big prime divisor.
It can be shown that N(n) = Ns(n, k) ∪Nb(n, k).
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1. Consider a prime enumeration pi and suppose that the series
N∑
i=1

1

pi
con-

verges. Therefore exists a κ such that
∞∑

i=κ+1

1

pi
<

1

2
.

2. Define Ndiv(d, n) the subset of N(n) whose elements are multiples of d ∈

N, d ≥ 1. It can be proven that |Ndiv(d, n)| = ⌊ |N(n)|
d

⌋ = ⌊n
d
⌋. Noticing

that Nb(n, k) is the union of all Ndiv(pi, n), where i > k, one can estimate
the size of Nb(n, κ) by:

|Nb(n, κ)| ≤
∞∑

i=κ+1

⌊
n

pi

⌋
≤

∞∑
i=κ+1

n

pi
<

n

2
.

3. An element m ∈ Ns(n, k) can be written as m = a·b, where a, b ∈ Ns(n, k), a
is a square-free part of m, and b is a perfect square of an element of Ns(n, k).
From this observation, two other sets are defined: Sfree(n, k), composed
of all elements a, and Sdiv(n, k), composed of all elements b. With these
considerations, the size of Ns(n, k) is estimated:

|Ns(n, k)| ≤ |Sfree(n, k)× Sdiv(n, k)| = |Sfree(n, k)| · |Sdiv(n, k)|.

4. Since m = a ·b for all m ∈ Ns(n, k), the number of elements of Sdiv(n, k) can
be estimated by setting a = 1 and using the definition of b, i.e. b = r2 for r ∈
Ns(n, k). Finding the size of Sdiv(n, k) turns into a problem of counting the
number of valid m = r2. Noticing that Ns(n, k) ⊆ N(n), one can establish:
|Sdiv(n, k)| ≤

√
|Ns(n, k)| ≤

√
|N(n)| =

√
n.

5. An element of Sfree(n, k) is of the form m = pϵ11 ·pϵ22 · · ·pϵkk , where ϵi ∈ {0, 1}.
Consequently, |Sfree(n, k)| ≤ 2k.

6. Since N(n) = Ns(n, k) ∪Nb(n, k), for every k, one concludes that:

|N(n)| ≤ |Ns(n, κ)|+ |Nb(n, κ)| < 2κ
√
n+

n

2
.

7. In particular, if n = 22κ+2 then |N(n)| < 22κ+2 = n, which is a contradiction,
since |N(n)| = n. Therefore, the original consideration of the convergence of
a series of prime reciprocals must be false. That is only possible if there are
infinitely many primes.

3 Description of the Formalization

Only the formalizations of the proofs based on Mersenne Numbers and on the
Euler Product Formula are discussed here, as they required significantly more ef-
fort than the traditional proofs. The formalization based on the Harmonic Prime
Reciprocal Series presented the most significant divergences from the informal
proof. On the contrary, it was possible to develop a formalization fairly close to

https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_harmonic_prime.pvs/
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the manual proofs for the ones based on Fermat Numbers and Fürstenberg’s
topological arguments .

Before diving into the details, it is worth noticing the main building blocks on
which this effort is founded. In addition to the PVS prelude and basic NASALib
libraries such as set and structures, the presented formalization leverages
specialized results from the NASALib libraries algebra, topology, series, and
analysis. Notably, the concepts of topological spaces and relations between
open and closed sets were taken from the library topology. Some properties
about limits and integrals were imported from the analysis library. The series
library provides properties about the convergence of (infinite) series. Finally,
from the algebra library, results related to (finite) groups and cosets were used.
As an original contribution to these libraries, several results were added, such
as a reformulation of the Fundamental Theorem of Arithmetic and a version of
the Cauchy Product Theorem, among others.

3.1 Mersenne Numbers

The first design decision addressed how to specify the multiplicative group
Zp \ {0}, where p is a prime number. Although there is a specification for the
ring Z/nZ , there exists no direct implementation for the multiplicative group
Z/nZ \ {nZ}. The group-related theorems that were applied belong to theories
that rely on the following assumption: the set of all elements of an abstract type T
must satisfy a group predicate . In other words, the importation of these theo-
ries introduces a Type Correctness Condition (TCC) automatically generated by
the system, which is a proof obligation for checking whether the type T consists
of a complete set of elements forming a group. This is not a direct application
of the lemma Zp_prime_is_field , already in NASALib, stating that Z/pZ
is a field when p is a prime number and thus, that Z/pZ \ {pZ} forms a group
under multiplication. Indeed, the specification of field in the theory field_def

, from a division ring , gives the flexibility of considering the set of cosets of
nZ in Z as a parameter in the lemma Zp_prime_is_field , without excluding
the identity for addition nZ. To use the results in theory finite_groups, it was
necessary to specify the type nz_coset(n) and then prove that it satisfies
the group properties when n is a prime number . Roughly, it could be done by
using the lemma Zp_prime_is_field combined with enough expansions of the
definition of group?[nz_coset(n)](Z(n)) in the lemma nz_prime_is_group.

Still, some TCCs appeared during the manipulation of elements of type
nz_coset(p); for this reason, additional utility lemmas were proved and sep-
arated in the ring_zn_extra.pvs file, as they could be used in more general
situations. The content of this file ranges from lemmas of equivalence of the
operations in Zn and Z/nZ to some direct ring properties, such as product and
summation closure, and the characteristic of the ring Zp being p.

It is worth mentioning that some type-related proofs can be avoided; instead
of using generic definitions such as the power function specified in the group
file, it is possible to define a specialized function for handling this new nz_coset
type. This could be done by forcing the type to be nz_coset instead of the

https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_Fermat.pvs/
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_topology.pvs/
https://github.com/nasa/pvslib/blob/master/algebra/algebra_examples/ring_zn.pvs/
https://github.com/nasa/pvslib/blob/master/algebra/finite_groups.pvs/#L19-L19
https://github.com/nasa/pvslib/blob/master/algebra/algebra_examples/ring_zn.pvs/#L110-L111
https://github.com/nasa/pvslib/blob/master/algebra/field_def.pvs/
https://github.com/nasa/pvslib/blob/master/algebra/division_ring_def.pvs/
https://github.com/nasa/pvslib/blob/master/algebra/algebra_examples/ring_zn.pvs/#L110-L111
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_groups.pvs/#L49-L49
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_groups.pvs/#L72-L74
https://github.com/nasa/pvslib/blob/master/algebra/algebra_examples/ring_zn_extra.pvs/
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PVS-deduced coset type. For example, the signature of the power function was
restricted to pow : Z/pZ \ {pZ} × Z≥0 → Z/pZ \ {pZ} instead of using the
more general version pow : Z/pZ × Z≥0 → Z/pZ.

After the explanation of these preliminaries, the actual proof of the infinitude
of prime numbers can be finally discussed.

Lemma 1. If d is a divisor of Mp where p ∈ P, then d is odd.

Proof. Since p is a prime number, p ≥ 2, implying that Mp = 2 · 2p−1− 1 is odd.
Suppose that d is even. Since it is a divisor of Mp,

Mp = d · k1, k1 ∈ Z.

By the evenness of d
Mp = 2 · k2 · k1, k2 ∈ Z.

This is a contradiction since Mp is odd.

Lemma 2. Let q, p ∈ P, where q is a divisor of Mp, then

(2 + qZ)q−1 = 1 + qZ.

Proof. By Lemma 1, q is an odd number since q is a prime q ≥ 3. By Fermat’s
Little Theorem,

2q−1 ≡ 1(mod q), which implies that (2 + qZ)q−1 = 1 + qZ.

The last equation comes from the ring isomorphism Z/nZ ∼= Zn.

In the PVS specification, the equivalence in the modular arithmetic formula-
tion and quotient ring formulation was proved directly . It was also necessary to
adapt Fermat’s Little Theorem to the requirements in the proof: it was specified
in the ap ≡ a (mod p) form, not in the ap−1 ≡ 1 (mod p) form .

Lemma 3. Let q, p ∈ P, where q is a divisor of Mp, then

(2 + qZ)p = 1 + qZ.

Proof. Since q divides Mp,

Mp ≡ 0 (mod q), which implies

2p − 1 ≡ 0 (mod q), which is equivalent to

2p ≡ 1 (mod q).

Using the isomorphism Z/nZ ∼= Zn.

(2 + qZ)p = 1 + qZ.

Theorem 1. There are infinitely many primes.

https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_groups.pvs/#L64-L65
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_groups.pvs/#L96-L97
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_groups.pvs/#L99-L101
https://github.com/nasa/pvslib/blob/master/algebra/algebra_examples/ring_zn_extra.pvs/#L30-L32
https://github.com/nasa/pvslib/blob/master/numbers/fermats_little_theorem.pvs/#L36-L41
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_groups.pvs/#L103-L105
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_groups.pvs/#L107-L108
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Proof. Suppose there exists a finite number of prime numbers; then there should
exist a maximum prime pmax. Let q ∈ P be the divisor of Mpmax

. Using Lemma
3,

(2 + qZ)pmax = 1 + qZ.

In particular, from the definition of order, it follows that ord(2+qZ) | pmax, but
that is only possible if ord(2+qZ) = 1 or ord(2+qZ) = pmax. If ord(2+qZ) = 1,
then 2 + qZ = 1 + qZ, which is not possible since q > 1. Therefore, it must be
the case that ord(2 + qZ) = pmax.

Using Lemma 2,
(2 + qZ)q−1 = 1 + qZ.

Again, by the definition of order, ord(2 + qZ) | q − 1 and pmax | q − 1. Since
a divisor is smaller than or equal to the number it divides, pmax ≤ q − 1. More
specifically, pmax < q. Therefore, q is a prime greater than the maximum prime,
a contradiction.

It turns out that Lagrange’s Theorem was not necessary. In fact, if it had
been used, it would have been necessary to prove additional lemmas on group
orders; however, these proofs can be quite tedious. Instead, the following classical
theorem was used: if an element a from a group G satisfies an = 1 for some integer
n, then ord(a) divides n .

Related to TCCs, since the definition of structures in the NASALib’s alge-
bra library, such as rings, is built upon the group definition, and these in turn
are based on monoids (and so on), type dependencies become an exhaustive
issue. The problem arises because they require a significant number of TCCs.
If such structures are imported naively, each new algebraic structure used in a
proof could generate around five new TCCs. Consequently, there is room for im-
provement in the algebra library from various angles, such as through new utility
theorems, new proof strategies (conservative extensions of the proof calculus pro-
vided by PVS), and possibly type judgments, which provide more information to
the type checker. Nevertheless, the algebra library contains many powerful the-
orems, including classic results from group and ring theory, such as Lagrange’s
Theorem, Sylow’s Theorems, and many others, some of which facilitated the
presented work.

3.2 Formalization Based on Euler Product Formula and Cauchy
Equality

The fourth proof in “THE BOOK” relies on analytic number theory [3]. As a side
effect of Euler’s Formula [15], proved in the 18th century by Leonhard Euler,
this proof has a deep connection to the Riemann zeta function [29]. The key
idea is to demonstrate that the zeta function can be factored into a product over
prime numbers. With this connection, the estimation for the number of primes
can be as large as desired, confirming that primes are indeed infinite.

The Riemann-zeta function is defined as:

https://github.com/nasa/pvslib/blob/master/algebra/finite_groups.pvs/#L72-L73
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ζ(s) =

∞∑
n=1

1

ns
for s ∈ C, Re(s) > 1.

Euler’s product formula, on the other hand, relates the primes in the following
way:

ζ(s) =
∏

p prime

(
1− 1

ps

)−1

for s ∈ C, Re(s) > 1.

Notice that, from the definition of the zeta function, s must have a real part
greater than one. It turns out that this Euler product also works for s = 1,
but the zeta function at this value tends to infinity, something that should not
happen if there are finite primes.

In particular, it is possible to estimate the prime-counting function by the
product of the primes according to the Euler formula, which by itself can be
bounded using the natural logarithm function in the following way:

log(n) ≤
∏

p prime

(
1− 1

p

)−1

≤ π(n) + 1.

where log(n) is the natural logarithm function and π(n) is the function that
counts the number of prime numbers less than or equal to a given number n.

As is typical in traditional number theory proofs, this proof heavily relies
on concepts from analysis, such as limits and series, which are addressed in the
NASALib Analysis library [19].

3.2.1 Prime Enumeration The notation P = {p1, p2, p3, . . .} in [1] has the
problem of assuming that the set of prime numbers P is infinite beforehand, and
the sequence should be undefined otherwise. For simplicity, in the specification,
the starting index is zero, and undefined cases are set to zero. This means that
if the prime numbers have an end at the nth value, then pi = 0 for i ≥ n.
Therefore, p0 = 2 p1 = 3 p2 = 5. The proper definition of the prime sequence
is given by a function ρ : Z≥0 → Z≥0 . It remains to prove that for a subset of
the domain, S ⊆ Z≥0, this function is an enumeration. For this purpose, some
necessary properties are inductively formalized, such as:

1. ρ(i+ 1) > ρ(i) ∨ ρ(i+ 1) = 0;
2. ∀ρ(i), ρ(j) ∈ P, ρ(i) = ρ(j) ⇒ i = j;
3. ∀p ∈ P,∃i ∈ Z≥0, ρ(i) = p;
4. Let i, n ∈ Z≥0, i < π(n) ⇒ ρ(i) ∈ P.

The ρ function is indeed an enumeration for a subset of the domain. If there
are infinitely many primes, all primes will appear in ascending order in the
domain Z≥0. Otherwise, for the domain S = {n ∈ Z≥0 : n < π(pmax)}, all
primes will also appear in ascending order, and in its complement, Z≥0 \ S, the
function will be zero.

https://github.com/nasa/pvslib/tree/master/analysis/
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/prime_enum.pvs/#L31-L37
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/prime_enum.pvs/#L50-L53
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/prime_enum.pvs/#L70-L72
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/prime_enum.pvs/#L74-L75
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/prime_enum.pvs/#L92-L100


12 B.B.O. Ribeiro, M.M. Moscato, T.A. de Lima and M. Ayala-Rincón

In the following proofs, it will be necessary to use the Fundamental Theorem
of Arithmetic [17]. This theorem is in NASALib , but specified generically:
any natural greater than one can be written as a product of a non-decreasing
sequence of primes, for example, 360 = 2 · 2 · 2 · 3 · 3 · 5. For the current purposes,
a specialized version of this theorem is used, stating that any natural number
greater than one can be written as a product of an increasing sequence of powers
of primes, for instance, 360 = 23 · 32 · 5.

Because a prime enumeration was already specified, it can be used to spec-
ify the prime powers in sorted form. Still, knowing beforehand that there are
infinitely many primes, one should be tempted to describe the Fundamental
Theorem as the existence of the infinite product, with large enough terms hav-
ing exponent zero, such as 360 = ρ(0)3 · ρ(1)2 · ρ(2)1 · ρ(3)0 · ρ(4)0 . . . . However,
this would lead to the same mistake of circularly assuming that there are in-
finitely many primes. Therefore, a new version of the Fundamental Theorem
was formalized.

Given a family of sets Ep = {n ∈ Z : ∃k ∈ Z≥0, n = pk}, where p ∈ P, the
set Dn can be defined as the finite Cartesian product shown below .

Dn =×π(n)−1

i=0 Eρ(i).

Thus, the Fundamental Theorem can be rewritten as the existence of a unique
element (ρ(0)ϵ0 , ρ(1)ϵ1 , . . . , ρ(π(n) − 1)ϵπ(n)−1) ∈ Dn, such that the product of
its entries equals n for every n ∈ Z, n > 1; i.e.,

n =

π(n)−1∏
i=0

ρ(i)ϵi .

Since the greatest prime divisor of a number is the number itself, the upper
limit of the product, π(n)− 1, guarantees that all prime divisors will appear in
the product.

It is worth mentioning that the definition of prime enumeration and prime
factorization is reused for the formalization based on prime reciprocal series
(Subsection 2.5); because of that, these proofs, alongside another general pur-
pose ρ function manipulation, were separated to a new file called prime_enum .
Additionally, using this new framework for the proof of the Fundamental The-
orem of Arithmetic, the application of lemmas related to integers was useful.
Among these lemmas, some properties related to the gcd function were recently
added to NASALib in the file number_util.pvs .

3.2.2 A Few Inequalities For the completion of the proof, a few inequalities
must be proven, starting from a classic one.

Lemma 4. ∀n ∈ Z≥0, log(n) ≤ Hn.

https://github.com/nasa/pvslib/blob/master/numbers/prime_factorization.pvs/
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/prime_enum.pvs/#L112-L114
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/prime_enum.pvs/#L147-L148
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/prime_enum.pvs/#L179-L183
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/prime_enum.pvs/
https://github.com/nasa/pvslib/blob/master/ints/number_util.pvs/
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_Euler.pvs/#L33-L34
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Proof. This can be done by considering the inequality
1

x
≤ 1

k
for x ∈ [k, k+1],

and the inequalities for finite summations of integrations:

log(n+ 1) =

∫ n+1

1

1

x
dx =

n∑
k=1

∫ k+1

k

1

x
dx ≤

n∑
k=1

∫ k+1

k

1

k
dx.

Then log(n+ 1) ≤
n∑

k=1

1

k
= Hn, and since log is an increasing function, log(n) ≤

Hn.

Despite being well known, this inequality was not explicitly stated in NASALib,
but all its prerequisites had already been proven in the analysis library. This
made its assisted proof relatively easy. The only minor problem was a TCC re-
lated to the integrability of each integral expression required in the proof; as the
summation is applied over slices of the larger integral, it was necessary to ensure
that everything is indeed integrable. However, lemmas for these steps were also
in the files defining the logarithmic function and integral operations.

The next inequality uses two definitions of functions. At first glance, the
defined functions appear to be different, but they are actually equivalent . Let
n ∈ Z≥0, n ≥ 2; the functions ξ and µ are defined as:

ξ(n) =

π(n)−1∏
i=0

∞∑
k=0

1

ρ(i)k
and µ(n) =

∑
k∈Z>0,

k=1 ∨ ∃p∈P,
(p≤n ∧ p|k)

1

k
.

One thing to notice is that in ξ, there are divisions by ρ(i), which can have
zero value if one tries to use a nonexistent prime number, but as the product is
taken from i = 0 to i = π(n) − 1, using property 4, all ρ(i) values are primes.
Even though it is not completely obvious, these two functions are indeed the
same. Some non-trivial lemmas must be proven first to formalize this fact.

Given the Cauchy product [11], the product of two convergent series is an-
other series. ( ∞∑

n=0

ai

)
·

( ∞∑
n=0

bi

)
=

∞∑
n=0

n∑
k=0

an−kbk. (1)

This formula has the restriction of one of the series being absolutely conver-
gent, but the series in the formalization is defined over positive numbers, making
this restriction trivially valid. The last series in the formula can be flattened in
such a way that it maintains its convergence, but to prove this, first, two other
functions are defined. Let n ∈ Z≥0, the functions θ and τ are defined as:

θ(n) = max

({
k ∈ Z≥0 :

k(k + 1)

2
≤ n

})
and τ(n) = n− θ(n)(θ(n) + 1)

2

Corollary 1. Let n, k ∈ Z≥0, 0 ≤ k ≤ n, then θ(
n(n+ 1)

2
+ k) = n and

τ(
n(n+ 1)

2
+ k)=k.

https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_Euler.pvs/#L73-L80
https://github.com/nasa/pvslib/blob/master/series/series_extra.pvs/#L47-L50
https://github.com/nasa/pvslib/blob/master/series/series_extra.pvs/#L52-L56
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Proof. Since 0 ≤ k,
n(n+ 1)

2
≤ n(n+ 1)

2
+ k. Also, since k ≤ n,

n(n+ 1)

2
+ k ≤ n(n+ 1)

2
+ n <

n(n+ 1)

2
+ n+ 1 =

(n+ 1)(n+ 2)

2
.

Therefore, by the definition of θ, one must have θ(
n(n+ 1)

2
+ k) = n, implying

that

τ

(
n(n+ 1)

2
+ k

)
=

n(n+ 1)

2
+ k −

θ
(

n(n+1)
2 + k

)(
θ
(

n(n+1)
2 + k

)
+ 1
)

2
.

=
n(n+ 1)

2
+ k − n(n+ 1)

2
= k.

Corollary 2. Let c be a sequence, such that ci = a(θ(i)−τ(i)) · bτ(i). For every
n, k ∈ Z≥0, 0 ≤ k ≤ n.

cn(n+1)
2 +k

= an−k · bk

Proof. Using the same argumentation as the Corollary 1, we have that for i =
n(n+ 1)

2
+ k, θ(i) = n and τ(i) = k, therefore ci = a(θ(i)−τ(i)) · bτ(i) = an−k · bk

Lemma 5. Let n, k ∈ Z≥0, 0 ≤ k ≤ n, then
n∑

k=0

an−kbk =

n(n+1)
2 +n∑

k=
n(n+1)

2

a(θ(k)−τ(k)) · bτ(k).

Proof. Using the Corollary 1, it holds that θ(
n(n+ 1)

2
+k) = n and τ(

n(n+ 1)

2
+

k) = k, therefore, by change of basis.

n(n+1)
2 +n∑

k=
n(n+1)

2

a(θ(k)−τ(k)) · bτ(k) =

n∑
k=0

a(θ(n(n+1)
2 +k)−τ(n(n+1)

2 +k)) · bτ(n(n+1)
2 +k) =

n∑
k=0

an−kbk.

Lemma 6. Let N ∈ Z≥0, then
N∑

n=0

n∑
k=0

an−kbk =

N(N+1)
2 +N∑
n=0

a(θ(k)−τ(k)) · bτ(k).

https://github.com/nasa/pvslib/blob/master/series/series_extra.pvs/#L58-L62
https://github.com/nasa/pvslib/blob/master/series/series_extra.pvs/#L64-L68
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Proof. By induction on N .
Case N = 0, by Corollary 1, θ(0) = 0 and τ(0) = 0, therefore a0b0 =

a(θ(0)−τ(0)) · bτ(0).
Case N > 0, by i.h.

N+1∑
n=0

n∑
k=0

an−kbk =

n+1∑
k=0

an−kbk +

N(N+1)
2 +N∑
n=0

a(θ(k)−τ(k)) · bτ(k).

Then, by Lemma 5, the last expression is equal to
(N+1)(N+2)

2 +N+1∑
k=

(N+1)(N+2)
2

a(θ(k)−τ(k)) · bτ(k) +

N(N+1)
2 +N∑
n=0

a(θ(k)−τ(k)) · bτ(k) =

(N+1)(N+2)
2 +N+1∑
n=0

a(θ(k)−τ(k)) · bτ(k).

The next theorem requires formalizing one more lemma.

Lemma 7. Let n ∈ Z≥0, there exist m, r ∈ Z≥0, with r ≤ m, and n =
m · (m+ 1)

2
+ r.

Proof. By induction on n.
Case n = 0, m = r = 0 satisfy the equality.
Case n > 0. By i.h., if r = m,

n+ 1 =
m · (m+ 1)

2
+m+ 1 =

(m+ 1)(m+ 2)

2
=

(m+ 1)[(m+ 1) + 1]

2
+ 0.

Otherwise, if r < m, n+ 1 =
m · (m+ 1)

2
+ (r + 1), and r + 1 ≤ m.

Now, the flattened version of the series can be shown to be equal to the
original series.

Theorem 2. Let an and bn be positive sequences and
∞∑

n=0

n∑
k=0

an−kbk convergent.

Then
∞∑

n=0

n∑
k=0

an−kbk =

∞∑
k=0

a(θ(k)−τ(k)) · bτ(k).

Proof. It should be proved that

∣∣∣∣∣L−
n∑

k=0

a(θ(k)−τ(k)) · bτ(k)

∣∣∣∣∣ < ϵ, for every real

ϵ > 0, for larger enough n ≥ N , where L =

∞∑
n=0

n∑
k=0

an−kbk.

https://github.com/nasa/pvslib/blob/master/series/series_extra.pvs/#L44-L45
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By rewriting n as
m · (m+ 1)

2
+ r, where 0 ≤ r ≤ m (Lemma 7), and using

Lemma 6, the difference can be estimated as follows.∣∣∣∣∣∣L−

m·(m+1)
2 +r∑
k=0

a(θ(k)−τ(k)) · bτ(k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣L−

m·(m+1)
2 +m∑
k=0

a(θ(k)−τ(k)) · bτ(k) +

m·(m+1)
2 +m∑

k=
m·(m+1)

2 +r+1

a(θ(k)−τ(k)) · bτ(k)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣L−

m·(m+1)
2 +m∑
k=0

a(θ(k)−τ(k)) · bτ(k)

∣∣∣∣∣∣+
∣∣∣∣∣∣∣

m·(m+1)
2 +m∑

k=
m·(m+1)

2 +r+1

a(θ(k)−τ(k)) · bτ(k)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣L−

m·(m+1)
2 +m∑
k=0

a(θ(k)−τ(k)) · bτ(k)

∣∣∣∣∣∣+
∣∣∣∣∣

m∑
k=r+1

am−k · bk

∣∣∣∣∣ (By Cor. 1)

≤

∣∣∣∣∣L−
m∑

n=0

n∑
k=0

an−kbk

∣∣∣∣∣+
∣∣∣∣∣

m∑
k=r+1

am−kbk

∣∣∣∣∣ (By Lemma 6)

≤

∣∣∣∣∣L−
m∑

n=0

n∑
k=0

an−kbk

∣∣∣∣∣+
m∑

k=0

am−kbk (Since an and bn are positive sequences).

Since
∞∑

n=0

n∑
k=0

an−kbk is convergent, lim
n→∞

n∑
k=0

an−kbk = 0, implying that for

every ϵ > 0, there exist N1 ≤ n,N2 ≤ n, such that∣∣∣∣∣L−
m∑

n=0

n∑
k=0

an−kbk

∣∣∣∣∣ < ϵ

2
and

m∑
k=0

am−kbk <
ϵ

2
.

Therefore, for N = max(N1, N2),

∣∣∣∣∣L−
n∑

k=0

a(θ(k)−τ(k)) · bτ(k)

∣∣∣∣∣ < ϵ.

Since there was no previous specification of the Cauchy product in PVS, its
formalization was essential to obtain a complete theory.

The series flattening process was generalized for the product of more series.

Lemma 8. Let n ∈ Z>0, then
n−1∏
i=0

∞∑
k=0

ai(k) =
∑

k,jl∈Z≥0

j0+j1+...+jn−1=k

n−1∏
i=0

ai(ji).

https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_Euler.pvs/#L38-L47
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_Euler.pvs/#L49-L62
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Proof. By induction on n. For n = 1, this trivially says that
∞∑
k=0

a0(k) =

∞∑
k=0

a0(k). For n > 1, by i.h.,

n∏
i=0

∞∑
k=0

ai(k) =

( ∞∑
k=0

an(k)

)
·

 ∑
k,jl∈Z≥0

j0+j1+...+jn−1=k

n−1∏
i=0

ai(ji)

 .

By Cauchy product (Formula 1), the last expression is equal to

∞∑
m=0

∑
jl∈Z≥0

j0+j2+...+jn=m

an(m− (j0 + j1 + . . .+ jn−1)) ·
n−1∏
i=0

ai(ji)

=

∞∑
m=0

∑
jl∈Z≥0

j0+j2+...+jn=m

an(jn) ·
n−1∏
i=0

ai(ji) =

∞∑
m=0

∑
jl∈Z≥0

j0+j2+...+jn=m

n∏
i=0

ai(ji)

=
∑

k,jl∈Z≥0

j1+j2+...+jn=k

n∏
i=0

ai(ji).

The last equality uses the flattening process of Theorem 2.

The equality of functions ξ and µ, used in the informal proof, can be obtained
using Lemma 8 and the Fundamental Theorem of Arithmetic.

Theorem 3. ξ(n) = µ(n)

Proof. Using Lemma 8, we have

π(n)−1∏
i=0

∞∑
k=0

1

ρ(i)k
=

∑
k,jl∈Z≥0

j1+j2+...+j(π(n)−1)=k

π(n)−1∏
i=0

1

ρ(i)ji

Notice that every term of the right series is of the form

1

ρ(0)ϵ1
· 1

ρ(1)ϵ2
· · · 1

ρ(m)ϵm
, m = π(n)− 1

By the Fundamental Theorem of Arithmetic, this product results in a unique

number
1

n
. In particular,

1

1
appears in the right series (ϵi = 0) and since we are
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summing over all possibilities of exponents, every
1

n
, for a n that is divisible by

some p ∈ P, p ≤ n is in the summation. As a result

∑
k,jl∈Z≥0

j1+j2+...+j(π(n)−1)=k

π(n)−1∏
i=0

1

ρ(i)ji
=

∑
k∈Z>0,

k=1 ∨ ∃p∈P,
(p≤n ∧ p|k)

1

k

However, in PVS, as this property was only needed in the next lemma, it was
faster to associate each term directly in the next proof instead of stating this
equality as a separate PVS lemma.

Lemma 9. Let n ∈ Z>0, Hn ≤ µ(n).

Proof. From the definition of the µ function, and since it is an absolutely con-

vergent series, if for every
1

k
, 1 < k ≤ n, there exists a prime p | k, p ≤ n, the

series can be ordered as:

µ(n) =

n∑
k=1

1

k
+

∑
k∈Z>n,

k=1 ∨ ∃p∈P,
(p≤n ∧ p|k)

1

k
.

Which trivially results in Hn ≤ µ(n). To conclude, since 1 < k ≤ n and
a divisor is less than or equal to the number it divides, all prime divisors of k
satisfy the inequality p ≤ k. Therefore, the maximal prime divisor of k, say p, is
such that p ≤ n.

For the PVS formalization, such a series rearrangement needed to be ex-
pressed in a more explicit form; for that reason, a theory called sequence_extra

was included, in which a constructive specification of the function that orders
by common summed values is given.

Lemma 10. Let n, i ∈ Z≥0, for i < π(n),
ρ(i)

ρ(i)− 1
≤ i+ 2

i+ 1
.

Proof. Notice that
ρ(i)

ρ(i)− 1
≤ i+ 2

i+ 1
⇐⇒ 1+

1

ρ(i)− 1
≤ 1+

1

i+ 1
⇐⇒ i+1 ≤

ρ(i)− 1 ⇐⇒ i+ 2 ≤ ρ(i).
This is proved by induction. For i = 0, 0 + 2 ≤ 2; for i > 0, by i.h., i + 1 ≤

ρ(i − 1), which implies that i + 2 ≤ ρ(i − 1) + 1. By the property 4, ρ(i) ̸= 0,
and using Lemma 1, it can be shown that ρ(i − 1) < ρ(i). Since ρ(i − 1) is an
integer, ρ(i− 1) + 1 ≤ ρ(i); therefore, i+ 2 ≤ ρ(i).

Lemma 11. ξ(n) ≤ π(n) + 1.

https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_Euler.pvs/#L90-L92
https://github.com/nasa/pvslib/blob/master/ints/sequence_extra.pvs/
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_Euler.pvs/#L98-L100
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_Euler.pvs/#L106-L107
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Proof. Since the geometric series has a closed form, ξ(n) can be simplified as
shown below.

π(n)−1∏
i=0

∞∑
k=0

1

ρ(i)k
=

π(n)−1∏
i=0

ρ(i)

ρ(i)− 1
≤

π(n)−1∏
i=0

i+ 2

i+ 1
.

The last inequality is obtained using Lemma 10. Notice that the last expression

is a telescoping product , therefore,
π(n)−1∏
i=0

i+ 2

i+ 1
=

(π(n)− 1) + 2

0 + 1
= π(n) + 1.

Theorem 4. There are infinitely many primes.

Proof. Composing the inequalities from Lemmas 4, 11 and 9, one obtains log(n) ≤
ξ(n) = µ(n) ≤ π(n) + 1. Since the logarithm is a strictly increasing function,
there is no maximum π(n) value.

4 Conclusion and Future Work

One of the goals of the presented PVS library is to demonstrate to mathe-
maticians the potential of interactive theorem provers in formalizing complex
mathematical concepts, showing that substantial and technically intricate proofs
can be rigorously verified using computer software. The complete formalization
of distinct proofs of the infinitude of primes from the renowned book “Proofs
from THE BOOK” contributed significantly to the development of a rich and
mathematically diverse library to attract the interest of researchers from various
branches of mathematics. This represents a significant step forward regarding
other libraries intended for algebraists and computer scientists (e.g., [2, 5, 6, 8]).

Table 1 shows a quantitative overview of the formalization effort.

Table 1: Quantitative data.
PVS

theory Formulas TCCs
Specification

Size
(.pvs lines)

Proof
Commands
(.prf lines)

Main Dependencies
Prime
enum

Cauchy
Product series Topology

(NASALib)
Algebra

(NASALib)
Num Theory

Extra
Fermat 17 8 75 981 ✓

Mersenne 28 17 112 2568 ✓ ✓

Euler 39 28 112 3408 ✓ ✓ ✓ ✓

Fürstenberg 19 2 115 1822 ✓ ✓

Erdös 71 35 273 8117 ✓ ✓ ✓

Additional Theories Quantitative Data
PVS theory Formulas TCCs Specification Size Proof Commands

Primes enumeration 65 37 212 4574
Cauchy product formula 21 10 111 2302

Series extra 23 8 109 1610
Others 89 51 419 5125

This work highlights essential differences between the original proofs and
their mechanically checked counterparts. One of these differences is the way in
which primes are initially enumerated in the pen and paper proofs, where no

https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_Euler.pvs/#L94-L96
https://github.com/nasa/pvslib/blob/master/ints/inf_primes/inf_prime_Euler.pvs/#L109-L110
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consideration is given regarding the possibility of the existence of a maximum
number of primes. To address such an imprecision, an enumeration function was
defined in PVS, avoiding the initial implicit assumption on the infinitude of
primes, and thus ensuring a rigorous foundation for the required adaptation of
the Fundamental Theorem of Arithmetic. This result can be found in the file
prime_enum . Furthermore, the rich typing system supported by PVS played a
crucial role in highlighting the importance of distinguishing between the differ-
ent algebraic structures at play. In particular, for the proof based on Mersenne
numbers, the type system helped clarify the relationships between the different
structures involved. Also, although Lagrange’s theorem is not used, the formal-
ization leveraged a result about group orders, proving that the order of any
group element satisfying a particular condition divides a given integer.

Another key difference between the proofs in “THE BOOK” and their for-
malizations arises when the Cauchy product is used to prove the Euler product.
In “THE BOOK,” the connection between the Euler product and the harmonic
series is somewhat informal, which required improving the rigorousness of the
proof as part of the formalization effort. Since the Cauchy product was not in-
cluded in NASALib, its incorporation benefits both the analysis and the Series
library.

Additionally, the characteristic PVS features and existing PVS libraries were
crucial in guiding the formalization effort, particularly in handling aspects of
topology and number theory. Fürstenberger’s topological proof was straight-
forward due to the well-established PVS topology library, part of NASALib.
Similarly, the proof using Fermat numbers benefited from the comprehensive
number theory library in the PVS prelude. All that, conjugated with the typing
system and the ability to define custom functions, made it possible to address
the nuances of the infinitude of primes and formalize the proofs in a rigorous
and structured manner. It also allowed addressing the omissions and imprecision
in the original proofs and facilitated discovering simpler proof alternatives.

The proof using Fermat numbers (2.1) in “THE BOOK,” shows that any
two Fermat numbers are relatively prime, basically proving by induction that

the recursive relation
n−1∏
k=0

Fk = Fn − 2 holds. Consequently, the number 1 is

the only common divisor of two different Fermat numbers, since any Fermat
number is odd. From that, it is concluded that there must be infinitely many
primes, since there are infinitely many Fermat numbers. The last consequence
is assumed without proof. Although it is intuitive, it is not completely trivial.
Indeed, its proof has at least the same level of difficulty as the verification of
the previous recursive relation. The mechanization allowed addressing various
similar omissions, and provided a clear insight that the proofs of intuitive obser-
vations are not necessarily minor parts of the proving process. For the specific
previously discussed consequence, for each Fermat number k, it was considered
the minimum prime divisor of k (and formally proved that such a minimum
exists). Then, an injective function was built from the set of natural numbers

https://github.com/nasa/pvslib/blob/master/ints/inf_primes/prime_enum.pvs/
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to the set of minimum primes that divide Fermat numbers. Since this subset of
prime numbers is infinite, the set of prime numbers itself is infinite.

Table 2 summarizes some relevant differences between the proof in “THE
BOOK” and the mechanized proofs.

Further expansions of the presented formalization can include additional
proofs uncovered in “Proofs from THE BOOK,” particularly those exploring
other branches of mathematics or offering alternative perspectives on well-known
approaches. One area of interest is the formalization of a geometry-related proof
of the infinitude of primes, such as the one given in [10], which would broaden
the scope of the library beyond number theory, analysis, topology, and algebra.
Additionally, incorporating more advanced results in number theory, such as
Dirichlet’s Theorem on primes in arithmetic progressions, would be a valuable
addition. More in general, a key focus will also be to improve the level of au-
tomation in the PVS proofs. For instance, leveraging algebraic manipulations for
structures other than number fields, which is currently highly automated through
the Manip package [30]. This is particularly useful in streamlining the process
of formalizing pen-and-paper proofs without obscuring essential mathematical
reasoning steps.
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