
Exercises on Induction, Recursion, and Iteration

Induction on Natural Numbers

These exercises are intended to illustrate the trials and tribulations of induction, recursion,
and iteration. The exercises in this section refer to the theory induction.pvs.

1. The factorial function is defined in the NASA PVS theory ints@factorial as follows:

factorial(n): RECURSIVE posnat =

IF n = 0 THEN 1

ELSE n*factorial(n-1)

ENDIDF

MEASURE n

Problem: Use induction to prove that the factorial of any number strictly greater
than 1 is even. Lemma factorial even specifies this statement in PVS. The predicate
even? is defined in the PVS prelude library as follows.

even?(i): bool = EXISTS j: i = j * 2

Hint: First use (induct "n"). The base case is discharged by (grind). For the
inductive case, introduce the skolem constants, along with its type information, with
the proof command (skeep :preds? t). Then, expand the definitions of factorial
and even?. Be careful here, to avoid expanding all occurrences of factorial use the
command (expand "factorial" fnum), where fnum is a formula number. Next,
you have to introduce an skolem constant for the existential formula in the antecedent,
use for example (skolem fnum "J"), and to instantiate the existential variable in
the consequent, use for example (inst fnum "J*(ja+1)"). The proof command
(assert) finishes the proof.

2. Problem: Use induction to prove the following statement about the factorial function

∀n : n! ≥ n.

Lemma factorial ge specifies this statement in PVS.

Hint: First use (induct "n"). The base case is discharged easily. After expanding
the right occurrence of factorial, assert that the factorial of n is greater than or
equal to 1. This can be accomplished with the proof command (case "factorial(n)

>= 1"). Multiply both sides of that inequality by j+1 using the proof rule mult-by

(see lecture on proving real number properties). Finally, use (assert).

1



3. The two-variable Ackermann function can be defined as follows.

ack(m,n) =


n+ 1 if m = 0
ack(m− 1, 1) if n = 0
ack(m− 1, ack(m,n− 1)) otherwise.

Problem: Prove the following statement about the Ackermann function

∀m,n : ack(m,n) > m+ n.

Lemma ack gt m n specifies this statement in PVS.

Hint: Avoid induction, recursive judgments are your friends. Once you express the
formula as a recursive judgement, the proof of ack gt m n is just (grind). The TCCs
are discharged automatically using the Emacs command M-x tcp.

4. The exponent function is defined in the PVS prelude as follows.

expt(r, n): RECURSIVE real =

IF n = 0 THEN 1

ELSE r * expt(r, n-1)

ENDIF

MEASURE n

The following is an imperative version of this function written in pseudo-code.

function expt_it(x:real,n:nat):nat {

a := 1;

// a = expt(x,0)

for (i:=1; i <= n; i++) {

// invariant: a = expt(x,i)

a := a*x;

}

return a;

// post: a = expt(x,n)

}

In PVS, using the for loop defined in structures@for iterate, the function expt it

can be specified as follows.

expt_it(x:real,n:nat): real =

for[real](1,n,1,LAMBDA(i:subrange(1,n),a:real):a*x)

2



Problem: Prove that the functions expt it and expt coincide in all points x and n.
Lemma expt it sound specifies this statement in PVS.

Hint: After expanding the definition of expt it use lemma for induction[real].
All universal variables in that lemma, but inv, are automatically instantiated using
the proof command (inst? fnum). The universal variable inv corresponds to the
invariant of the loop and it is a predicate of the form

LAMBDA(i:upto(n),a:real): ...

where i is the iteration number and a is the value of the accumulator at each iteration.
Once you find the right invariant inv use the proof command (inst fnum inv). The
command (grind) finishes the proof.

5. The predicate even? can be inductively defined in PVS as follows.

even(n:nat): INDUCTIVE bool =

n = 0 OR (n > 1 AND even(n - 2))

Problem: Prove that for all natural number n, even?(n) holds if even(n) holds.
Lemma we are even specifies this statement in PVS.

Hint: Start the proof with (rule-induct "even") and then you are on your own.

Induction on Abstract Data Types

A data-type representing single variable polynomial expressions such as (x+3)^2-5x is de-
fined in PVS. This data-type is provided with a function that evaluates a polynomial expres-
sion on a real value and a function that symbolically computes the derivative of a polynomial
expression. The following lemmas have to be proved:

• The evaluation function is continuous.

• The evaluation function is differentiable.

• The function that computes the symbolic derivative of a polynomial expression is
correct.

The following exercises refer to definitions that are provided in the theories PolyExpr.pvs

and poly expr.pvs.

1. Study the definitions in PolyExpr.pvs and poly expr.pvs.

Problem: Using those definitions write a statement that represents the following
proposition: “The derivative of (x+3)^2-5x is equal to 2x+1.” Prove it.

Hints:

3



• If p1 and p2 are PVS objects of type PolyExpr, what is the intended semantics
of the statement “p1 is equal to p2?”

• The proof command decompose-equality can be used to prove that two PVS
functions are equal.

2. Problem: Prove the formula eval continuous that states the fact that the evaluation
function is continuous. This formula is expressed as a recursive judgment, which allows
for an inductive proof without explicitly using induction.
Hints:

• The lemma PolyExpr inclusive, which is part of the definition of the type
PolyExpr, states that all elements of that type are built with either a constant,
a variable, an addition, a subtraction, a multiplication, or a power constructor.

• Note that the inductive hypothesis is hidden in the type of the quantified variable
“v”. To make this type explicit, use the command typepred, e.g., (typepred

"v(expr1(pexpr))").

• The following lemmas in the NASA PVS Library state the continuity of the con-
stant, identity, addition, subtraction, multiplication, and power functions, respec-
tively: const cont, id cont, add cont, sub cont, mult cont, and pow cont.

3. Problem: Prove the recursive judgment eval differentiable that states the fact
that the evaluation function is differentiable.
Hints:

• The following lemmas in the NASA PVS Library state the differentiability of
the constant, identity, addition, subtraction, and multiplication functions, respec-
tively: derivable const lam, derivable id lam, derivable add lam, derivable sub lam,
and derivable mult lam.

• The differentiability of the power function has to be proved with the lemmas
comp derivable fun and derivable pow lam.

4. Homework: Prove the lemma eval derivative that states the correctness of the
evaluation function. Use induction on the variable pexpr.

Hints:

• The following lemmas in the NASA PVS Library state the derivative of the
constant, identity, addition, subtraction, and multiplication functions, respec-
tively: deriv const lam, deriv id lam, deriv add lam, deriv sub lam, and
deriv mult lam.

• The derivative of the power function has to be proved with the lemmas chain rule[real,real]

and deriv pow lam.

• The lemma eta[real,real] states the η-rule: For all f of type [real->real]

and x of type real, f = λx.f(x).

4


